
IVC Software Framework Programmer Manual 0.1
(updated 07/09/2004)

Shashikant Penumarthy, Bruce W. Herr & Katy Börner

InfoVis Lab @ Indiana University
Bloomington, IN 47405, USA
Email: sprao@indiana.edu

www: http://iv.slis.indiana.edu

This document is work in progress!

The architecture is going to keep changing for the next few months.

The javadoc is at http://iv.slis.indiana.edu/api/

Table of Contents
1 Introduction... 1
2 Target Audiences ... 1
3 Major Design Decisions.. 2
4 Plug-In Based Software Architecture ... 2
4.1 Core ... 3
4.2 Data Models... 3
4.3 Persistence.. 4
4.4 Graphical User Interface.. 4
4.5 Plug-Ins.. 5
5. Extending the IVC.. 5
5.1 Integrating New Algorithms ... 5
5.2 Writing New Persisters .. 7
5.3 Integrating Toolkits .. 7
6. Conclusions ... 8

1 In

teps to
integrate new algorithms. Please also consult the javadoc at http://iv.slis.indiana.edu/api/

troduction
The Information Visualization CyberInfrastructure (IVC) software framework was designed to

facilitate the integration of diverse data analysis, modeling and visualization algorithms [1-3]. This
document describes the requirements for a general purpose software framework, motivates major
design decisions, details the general software architecture and discusses the necessary s

.

2 T

archers and
edu

arget Audiences
The IVC aims to serve two main user groups: (1) Producers or developers of new data

analysis, modeling and visualization techniques with an interest to quickly disseminate their
algorithms to their peers but also to the much larger number of consumers, and (2) Consumers
of advanced data analysis, modeling and visualization techniques such as rese

cators in need of advanced analysis algorithms and/or interactive visualizations.

Producers come from diverse fields of science. Today, data analysis, modeling and
visualization techniques are developed by computer scientists, mathematicians, physicists, etc.
The developed algorithms differ with respect to the data operated on, system resources needed,
interaction requirements, programming languages, libraries and packages used, etc. Developers

mailto:katy@indiana.edu
http://iv.slis.indiana.edu/
http://iv.slis.indiana.edu/api/
http://iv.slis.indiana.edu/api/

are

umentation, etc. They want a highly usable system that is unbreakable and
igh quality results. Consumers do not care about the details of the

Design Decisions

 that the IVC itself
has

kind of data format, but to allow researchers to use existing formats in
an

riven interface that keeps track of open data sets
nt feedback to the user (see section 4.4).

ugged”. This way, new kinds of algorithms, but also new data structures, new
olkits can be easily

inte

following components:

interested to preserve the unique features of their code and to minimize the time spent for
integrating code into the framework.

Consumers are interested to discover, analyze and communicate new patterns in data sets
that range from time series to complex semantic networks. They typically have deep knowledge
about the data set under consideration but little or no programming knowledge. Consumers are
used to menu-driven systems, multiple open windows and data sets, continuous system feedback,
step-by-step doc
quickly gets them the desired h
implementation.

3 Major
To best serve both user groups, the IVC framework must be very easy to extend and highly

usable.

Programming Language. To facilitate its wide spread usage, the IVC is implemented in the
Java programming language. Java is a high level language with a powerful API and is easy to
learn. Considering the wide range of platforms that this software needs to operate on, Java is an
obvious choice. Until recently, performance was a major concern with the Java programming
language and many researchers rejected Java altogether for this reason. Currently, however,
Java’s performance in applications software is comparable to that of other languages such as
C++1. Java still suffers from memory bloat, but we have taken care to ensure

 a small memory footprint. Also the primary purpose of the IVC is teaching and research, not
high-performance computing, hence memory is currently not of great concern.

Data Formats. Diverse file formats are kept track of by using the file extension. We
recognize that associating the type of file with its file extension is not the best method of
organizing data; including meta data in the file is better. However, it is extremely common
practice in day-to-day research to pass around files containing just plain data with the assumption
that the research context of the particular lab enables the lab members to understand what the
data is about. Introducing meta-data makes the data easily exchangeable, but adds additional
overhead to everything from data manipulation to analysis and visualization. In addition to this is
the fact that a big chunk of research data, especially in the InfoVis community, is generated using
scripts and hence our goal was to provide formats that could be easily parsed without a
knowledge of complex schemas. Meta data is extremely important when exchanging data across
platforms and technologies; hence we also provide support for XML-based formats. Our goal is to
not enforce any particular

efficient manner. In keeping with this, the IVC will continuously evolve to accommodate
changing methodologies.

Extendability. A plug-in based software architecture (see section 4.1) supports diverse data
formats (see section 4.2) using an extensible persistence layer (see section 4.3).

High usability is addressed by a menu d
and applicable algorithms and provides consta

4 Plug-In Based Software Architecture
The IVC is a pluggable framework. Each software component part of the IVC can be

“plugged-in” or “unpl
persistence methods, new look and feels for the interface and even entire to

grated.

The IVC framework can be divided into the

1 C/C++ however, still remains the language of choice for high-performance numerical computation mainly
due to it being a much more lower-level language.

Core – This is the manager of all system components and resources. It comprises the
registries, the initializer and the IVC class.

r locations and to

s – The analysis, modeling and visualization algorithms or toolkits.

All
visu

t have to deal with
issu

cover from it and to continue or at the very least save all unsaved data so that work is
not lost. The core logs every event that happens in the system to give developers the trace of

n error condition.2 The log can also be used by researcher as a digital ‘lab
boo
data

vailability of a data model in the IVC is determined by the plugins. Any data
model that is supported by a plugin becomes “supported” in the IVC. Examples of data models

are MatrixModel – which holds matrix type data, TableModel – which holds
tabu
netw

Data Models – All supported data structures fall into this category.

Persistence – This component provides ways to store data to disk or othe
load data into the data models.

Graphical User Interface (GUI) – The menu driven front-end for the system.

Plug-In

components except the core can be unplugged to fit the data analysis, modeling and
alization needs of diverse user groups. All are explained in the next subsections.

4.1 Core
The core of the IVC contains objects that manage the entire software system based on a set

of registries, which hold references to available plug-ins and provide information to the resources
available in the IVC. The core is responsible to

Initialize the entire system – When the IVC starts up, it scans all available components and
registers them with the appropriate registries. Next, it starts up the GUI so that users can load
data, run algorithms, save results, etc. At the end, before the system exits, the IVC core manages
the clean up, e.g., it closes open files and saves currently unsaved data.

Manage the available plug-ins – All components such as algorithms or persistence layer
objects must use the IVC to get references to each other. For example, when an algorithm needs
to inform the user that new data is available, it simply informs the core, which then uses the GUI
to give graphical feedback to the user. This way the algorithm writer doesn’

es pertaining to how the user gets appropriate feedback. Since each component in the
system is implemented as a plug-in, it is possible to completely by-pass the IVC framework and to
use the components directly. However, this is highly discouraged as providing the user with
constant feedback forms one of the major philosophies of the IVC framework.

Recover from errors to avoid losing data – Whenever an error occurs, the IVC tries to do its
best to re

events leading to a
k’ providing complete information on what steps were taken to get to a result for a particular
 set.

4.2 Data Models
Internal data structures in the IVC are referred to as data models to signify the fact that they

hold metadata information. For example, the MatrixModel can be used to store row and column
label information together with a distance matrix.3 Using the interface design pattern ensures that
changes in the underlying implementation do not affect any other part of the IVC. All components
are expected to utilize the IVC framework through the provided interfaces and not the actual
implementations. A

that are supported
lar data, TreeModel – while holds hierarchical data and Graph – which holds graph or
ork type data.

2 Users which encounter problems could send this log to the developers to get it resolved.
3 Note that there is a multitude of different formats in which a matrix could be stored in a file or database.
Internally, the IVC will (re-)represent all these different data formats as a MatrixModel.

Katy Borner
I thought we should mention/acknowledge here what JUNG etc. code we used here.I am sure its obvious from the javadoc but its nice to acknowledge efforts.

4.3
hms are accustomed with very diverse file

form

r plugin is an independent component that understands a particular file format
toge

This is handled by providing the end-user with choices for what persistence type they want to use
em. See section 5 for details on how to extend the IVC.

An easy to use GUI is one of the primary needs of our target consumers. While the most
powerful software systems in existence today use command line interfaces (e.g., the ‘R’ statistical
package or MATLAB) we decided to implement a graphical user interface to serve a much larger,
less technically inclined user population.

 Persistence
The targeted producers and consumers of algorit
ats and databases. The ease in which an existing data format can be supported or a

database connection can be established will make or break the IVC framework.

A plug-in based persistence layer was implemented to ensure that data in diverse formats
and from/to diverse sources can be read and written.

Each persiste
ther with a particular in-memory data model and takes care of both saving a data model to

file and loading from a file into a data model in memory. For example, the
HarwellBoeingMatrixModelPersister can be used to save a dense or sparse matrix in the Harwell
Boeing file format or to create a matrix object from a Harwell-Boeing format matrix file, either
dense or sparse.

To add a new file format to the IVC one simply has to add a new persister to the persistence
layer. The new persister will need to implement a simple interface. This can result in a situation
where more than one persister may possess the capability to save and load a certain file type.

and letting the user choose from th

By August 2004, the IVC will support diverse file formats such as TQD, CSV, Harwell Boeing,
etc. as well as XML-based formats such as GraphML and TreeML. A description of those formats
is included in the persistence layer javadoc.

4.4 Graphical User Interface

Two major features of command line interfaces were identified: continuous user feedback

and very efficient yet highly flexible user input. Both were recreated in part in the IVC interface. In
addition, knowledge about loaded data sets and their formats is used to guide the selection of
appropriate algorithms.

Continuous User Feedback – To achieve a high level of system feedback, the IVC
framework captures all messages that go to the default output and error streams (in Java,
System.out and System.err) and prints them in the background of the main application window.
All p

encouraged to print out information about the algorithm, e.g., its name, paper reference or a link
to a

lug-in implementations must satisfy a certain interface to be recognized as a valid plug-in and
this interface ensures that all messages are displayed to the user. Plug-in developers are

 web page with more information, when the plug-in is started. Soon, users will be able to use
the File > Preferences menu to adjust the level of feedback to their needs.

Extensive logging facilities are being developed to allow researchers to trace a sequence of
steps that took them from a starting data set to an ending analysis result and so on.

Efficient and Flexible User Input – A major feature of the IVC is its ability to generate GUI
interfaces for plug-ins on the fly using Java’s reflection mechanism. For example, if the Vector
Space Model algorithm needs to get a parameter value called ‘threshold’ from the user, the
programmer can either implement the GUI herself or let the IVC do it. If s/he wants the IVC to

acquire the input values, all s/he has to do is add get/set methods for each variable needed by
the algorithm. The IVC can examine these methods and construct a GUI to take in these values
from

Algorithm Selection Support – All available algorithms are categorized into Modeling

 the user. Algorithm writers who wish to use the dynamic GUI are also strongly
recommended to provide an object that validates each of the input values for the algorithm.
Currently, only primitive types and the String data type are supported. Details about the
dynamically generated GUI can be found in the javadocs.

,
Analysis, Visualization or Interaction. The menus are enabled or disabled based on whether an
algorithm can work with the data model currently in memory. This ensures that users know
exa

4.5

ctly if they can run an algorithm on a data set or not.

 Plug-Ins
A typical usage scenario for a non-toolkit data analysis or visualization algorithm plug-in

comprises loading a data set, starting the algorithm, and writing out the result(s).

Loading a Data Set – Users can select a data file via File Load on the top menu. This
starts the IVC component that loads the file into memory. Any IVC loader component is intended
to o

mic computation, the algorithm
should provide feedback to the user via the default output. The IVC framework will print them in

in application window. At the same time, the algorithm needs to inform
the user and the system that there’s new data available – the result of the computation. The data
is a

5. E
nforces no specific data structure, algorithmic ideology, or persistence method.

By making components independent, both the I/O component and the algorithm itself can be
ffecting any other components in the system. Hence, we

can incorporate support for XML files later and the VSM algorithm doesn’t need any modification
to re .

5.1

ptimize the I/O, taking care of error conditions, making it thread-safe, etc. It does not know or
care about know how the data will be used. Upon algorithm start, information about the algorithm
should be written out via the default output. The IVC framework will print them in the background
of the main application window.

Starting the Algorithm – A user selects an algorithm via the menu. At this point, the
algorithm is given the data structure with which to work. The IVC framework ensures that the
format of the selected data set conforms to the algorithm input format. The algorithm programmer
should fully concentrate on optimizing the functionality of and interactions with the algorithm.

Writing Out the Result(s) – Upon completion of the algorith

the background of the ma

vailable for the user to do further analyses or to save to a file.

xtending the IVC
The IVC e

Algorithms can be easily added as plug-ins.

Persisters can be plugged in to accommodate novel data formats or alternative database
connections.

 Toolkits can be plugged into the IVC as well. If a particular toolkit provides generic and
customizable data structures or algorithms, then IVC plug-ins can use the toolkit’s API without
being part of the toolkit.4

replaced with superior ones without a

ad in XML files because that is the job of the persistence layer

 Integrating New Algorithms
The following steps are required to integrate a new algorithm:

4 Usually this involves being sure that the license under which the toolkit is distributed allows this.
Always read the license before modifying or extending any software system.

1.
k files, etc.

r and see if it satisfies your requirements for data storing and

e for it
you

s of just a list of functions that return true or false.

Clean up the code and document it well. This is a requirement for all code in the toolkit.
Remove all hard-coded values such as references to on-dis

2. Look at the IVC persistence laye
loading. If not, you may choose to write a persister for it (see section 5.2) or simply directly
read the file. If you are using a data structure from a well-known API, it is more useful to write
a persister because others in the future can benefit from it.

3. Implement the Plugin interface:

a) If your code is a non-visual algorithm, you need to implement the Algorithm interface
(which has a single method called execute). Your algorithm should be started from inside the
execute method. The IVC calls the execute method on your algorithm. If your algorithm needs
input parameters from the user, there are two choices again: (I) Write a graphical interfac

rself. (II) Use the dynamically generated GUI. To do this you need to write a get/set method
for each parameter value that your algorithm needs. In addition, you may also choose to write a
class for validation of input parameters which lets the IVC know if the value that the user has
given is correct or not. This class consist

b) If your code is a visualization, then there are again two choices: (I) Build the visualization
window and return it to the IVC in the getView method of the Plugin. (II) Simply start your
visualization as a separate window and return null to the IVC. If your visualization uses a top-level
GUI Container, then you should do this.

If your code is not pure java, but makes calls to a C or a Perl program, then the procedure is
a little more complicated. For Perl you can use the PerlRunner utility class to run your perl script
and display feedback from your perl programs to the user. This class frees you from trying to
figure out if perl is installed on the end-user’s machine. For C, a similar class will be provided. To
refe your java program, you should use the getPluginPath r to your perl or C program from within
method g representing your plugin’s location. From there your non-of the IVC. That returns a strin
java res urces g a relative path. For example, if your algorithm code is o may be accessed usin
called MyAlgorithm.pl and is written in perl and if your directory structure is like this:

MyAlgorithm/MyAlgorithmPlugin.java

 /MyAlgorithm.pl

where MyAlgorithm is the folder inside which your plugin implementation and your perl code
reside, then inside your code, you would refer to your perl script like this:

IVC.getPluginPath() + “/”5 + “MyAlgorithm.pl”

4. Use the java jar utility and archive your files including your plugin implementation and place it
in the plugins folder. Put only java .class files in this jar. Put the other files at the same or
lower level in the directory structure and make sure this is how you refer to your files within

5.
in their

plugins folder and the algorithm is immediately available.6

h. If its non-java libraries, they should put those in the appropriate path.

rce – in which case

the code. Test your plugin to see that everything works.

Zip up or make a tar ball of all your files including non-java code. Now your algorithm is
available to anyone who has the IVC. Anyone can download your zip file, unzip it

6. If your algorithm needs additional libraries, inform the user. This is typically done using a
README file. If they are java libraries, then the user can put in their ‘lib’ folder or anywhere in
their classpat

Non-interpreted languages such as C need to be distributed either as sou
the user must compile and link it with the appropriate libraries, or as pre-compiled binaries –in

5 Instead of “/” you should use java.io.File.separator to ensure portability among different platforms.
6 Since the methods used to run your algorithm and get parameters etc are all public, a user doesn’t need
the IVC to run your algorithm. Anyone with reasonable programming skills can write a program to run your
algorithm in 20 minutes or less. This is due to the simple standardized interface.

wh h case you should provide information about where to get the shareic d library binaries (.DLL,
or .so files, etc).

Some of the algorithms we currently have implemented as a testbed are

• d Kleinberg’s burst

e.net

• Tree-visualization algorithms such as radial tree and treemap [4, 5].

Text analysis algorithms such as Salton’s vector space model [6] an
detection algorithm [7].

• Network modeling such as CAN [8], CHORD [9], Hypergrid [10], PRU [11] using the JUNG
API (http://jung.sourceforg

• Graph layout usin
California, Berkele

) from the University of California, Irvine.

 Network search algorithms such as random breadth first search [12] and k Random-Walk [13].

g

•

 the prefuse API (http://prefuse.sourceforge.net/) from University of
[14]. y

Provided with the current release of the IVC is a Test View available via
View Example

Note: The IVC framework supports the dynamic generation of GUI
interfaces for algorithm specific input values. The class AlgorithmView
takes in a proper Algorithm and optionally a Validator and a Labeller.
See the javadoc for detailed instructions.

File> Alg . It opens a panel with diverse fields and buttons.

5.2 Writing New Persisters
 may be

written in any language. However you must have a way of reading and writing java’s data types.

1. the Persister interface. We highly encourage you to include as much information
as you can in the property map to allow user to choose your persister among others.

2.
a persister that is robust against the many errors than can result due to IO errors, corrupted

3. property
map to provide that information and also put links in the documentation.

We are currently developing extensive persistence capability for Matrix and Graph type data
niversally important for document analysis, social network analysis,

and

5.3 Integrating Toolkits
an be integrated. They are independent enough to be (dis)connected at any
olkit offers a useful functionality, it can easily be used by algorithms in the IVC.

Moving the mouse pointer over the question marks provides further
information on what data should be entered. All text fields are validated.

Writing new persisters is just like writing new plugins, maybe even simpler. Persisters

The following steps are required:

Implement

Test your persister against sample data sets. This is not a trivial matter. It is not easy to write

files, etc.

Document your persister and file format well. If it is a standard file format, use the

4. Archive your persister using the jar utility. Now your persister is available to anyone with the
IVC7. Anyone who wishes to read the file format that your persister can read simply has to
download your jar and that file format immediately becomes “supported” in the IVC.

structures since those are u
 related areas. We will also provide Harwell-Boeing format for matrices and the very popular

Pajek .Net format for networks.

Entire toolkits c
time, and yet, if a to

In progress

7 Again, anyone without the IVC may also use this persister in their programs to read a particular file format.

Katy Borner
Explain property map.

http://jung.sourceforge.net/
http://prefuse.sourceforge.net/

6. Conclusions
The IVC separates out the functions such as data load and store, graphical user interface,

transaction logging and inter-convertibility between data formats, letting an algorithm programmer
concentrate on developing the core code and frees her from issues such as loading the data into
the

sively for
this

n to the necessary trade-offs between performance
and

nd visualization research. This will facilitate peer-review at the algorithm
o code in a research publication, minimize the time spent for re-

imp

and visualization algorithms. In Summer 2004, Shashikant Penumarthy and Bruce W. Herr
mas

aru implemented and integrated the
first

a particular data structure or keeping track of changing results over time. The plug-in based
architecture facilitates the replacement of I/O components, algorithms or GUI elements with
whatever is best suited to tackle a certain user task.

The greatest challenge will be to provide a generic method for describing arbitrary user data
and allowing for visual comparison of analysis results. We see XML being used exten

. The framework is not restricted to Java-based implementations and providing good support
for algorithms written in C or Perl will be a big challenge for us as well. We will support all
operating systems that have a reasonable user base such as Linux, Mac and Windows.

The IVC framework does not find a solutio
 usability. However, by separating out the components adequately, it allows users with

different areas of expertise and different usage requirements to benefit from and optimize their
code without breaking the rest of the system.

It is our hope that the IVC framework will be widely adopted to create a central code-base for
data analysis, modeling a
level rather than pseud

lementing algorithms, and enable researchers the large scale comparison of algorithms.

Acknowledgements
The Information Visualization Software Repository project was started in 2000. The repository

has since then been used to teach the Information Visualization class at Indiana University. Katy
Börner, Yuezheng Zhou, and Jason Baumgartner implemented the very first algorithms. In
Summer 2003, Jason Baumgartner, Nihar Sheth, and Nathan J. Deckard lead a project to design
a XML toolkit that enables the serialization and parallelization of commonly used data analysis

ter minded the current IVC framework. Josh Bonner and Laura Northrup were involved in the
implementation of the IVC and Hardik Sheth and Jeegar M

 data modeling and analysis algorithms.

Contributions of software packages and implementation work are acknowledged on the
respective software pages at http://iv.slis.indiana.edu/sw/.

Support comes from the School of Library and Information Science, Indiana University's High
etwork Applications Program, a Pervasive Technology Lab Fellowship, an

nd

Re

73.

ing
e

nd: IEEE Press. p. 257-262.

Performance N
Academic Equipment Grant by SUN Microsystems, SBC (formerly Ameritech) Fellow Grant, a
the National Science Foundation under DUE-0333623 and IIS-0238261.

ferences

1. Baumgartner, J., K. Börner, N.J. Deckard, and N. Sheth. An XML Toolkit for an Information
Visualization Software Repository. In IEEE Information Visualization Conference, Poster
Compendium. 2003. p. 72-

2. Baumgartner, J. and K. Börner. Towards an XML Toolkit for a Software Repository Support
Information Visualization Education. In IEEE Information Visualization Conference, Interactiv
Poster. 2002. Boston, MA

3. Börner, K. and Y. Zhou. A Software Repository for Education and Research in Information
Visualization. In Fifth International Conference on Information Visualisation. 2001. London,
Engla

http://iv.slis.indiana.edu/sw/

4. Baumgartner, J. and T. Waugh. Roget2000: A 2D hyperbolic tree visualization of Roget’s
Thesaurus. In Visualization and Data Analysis. Proceedings of SPIE. 2002. San Jose, CA,

5. ap, Radial Tree and 3D

6. e Generation, and

7. on
very and Data Mining. 2002: ACM Press. p. 91-101.

001. p. 161-172.

 Trans. on Networking, 2003.

10 r-to-
3. 9(2): p. 49:53.

orks.
 p. 995-1002.

x Systems". In 3rd International Symposium on Cluster
Computing and the Grid. 2003

3. Adamic, L., R. Lukose, A. Puniyani, and B. Huberman, Search in Power-Law Networks.
Physical Review E, 2001. 64(4): p. 046135.

14. Heer, J., S.K. Card, and J.A. Landay, prefuse: a toolkit for interactive information visualization.
Submitted paper draft, 2004.

USA

Sheth, N., K. Börner, J. Baumgartner, K. Mane, and E. Wernert. Treem
Tree Visualizations. In IEEE Information Visualization Conference. 2003. p. 128-129.

Salton, G., J. Allan, C. Buckley, and A. Singhal, Automatic-Analysis, Them
Summary of Machine-Readable Texts. Science, 1994. 264(5164): p. 1421-1426.

Kleinberg, J.M. Bursty and hierarchical structure in streams. In 8th ACM SIGKDD Intl. Conf.
Knowledge Disco

8. Ratnasamy, S., P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable Content-
Addressable Network. In Proc. ACM SIGCOMM. 2

9. Stoica, I., R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan, Chord: A Scalable Peer-
to-Peer Lookup Protocol for Internet Applications. IEEE/ACM
11(1): p. 17-32.

. Saffre, F. and R. Ghanea-Hercock, Beyond Anarchy: Self-Organized Topology for Pee
Peer Networks. Complexity, 200

11. Pandurangan, G., P. Raghavan, and E. Upfal, Building Low-Diameter Peer-to-Peer Netw
IEEE J. Select. Areas Commun, 2003. 21(6):

12. Farnoush, B.-K. and C. Shahabi. Criticality-based Analysis and Design of Unstructured Peer-
to-Peer Networks as "Comple

1

