S.N. Dorogovtsev REFERENCES ON COMPLEX NETWORKS: (1) The list of references of the book: Evolution of Networks: From Biological Nets to the Internet and WWW, S.N. Dorogovtsev and J.F.F. Mendes (Oxford University Press, Oxford, 2003). PS and PDF files of the book are available from http://sweet.ua.pt/~f2358/ and http://www.fyslab.hut.fi/~sdo/ (2) References on complex networks (mostly) collected from arXiv.org Try to find something by using a search option of your browser or text editor. ------------------------------------------------------------------- \thebibliography{0} \bibitem{bia0} S. Abe and N. Suzuki (2002), Itineration of the Internet over non-equilibrium stationary states in Tsallis statistics, cond-mat/0204336. \bibitem{bia1} G. Abramson and M. Kuperman (2000), Social games in a social network, {\em Phys. Rev.} E {\bf 63}, 030901; nlin.AO/0010015. \bibitem{bia2} L.A. Adamic (1999), The small world web, Proceedings of ECDL'99, LNCS 1696, pp. 443--452 (Springer, Berlin). \bibitem{bia3} L.A. Adamic (2000), Zipf, power-laws, and Pareto --- a ranking tutorial, \\ http://www.parc.xerox.com/istl/groups/iea/papers/ranking/. \bibitem{bia4} L.A. Adamic and B.A. Huberman (2000), Power-law distribution of the World Wide Web, {\em comment}, {\em Science} {\bf 287}, 2115a; cond-mat/0001459. \bibitem{bia5} L.A. Adamic, R.M. Lukose, and B.A. Huberman (2002), Local search in unstructured networks, {\em Handbook of Graphs and Networks: From the Genome to the Internet}, ed. S. Bornholdt and H.G. Schuster (Wiley-VCH, Berlin); cond-mat/0204181. \bibitem{bia6} L.A. Adamic, R.M. Lukose, A.R. Puniyani, and B.A. Huberman (2001), Search in power-law networks, {\em Phys. Rev.} E {\bf 64}, 046135; cs.NI/0103016. \bibitem{bia7} W. Aiello, F. Chung, and L. Lu (2000), A random graph model for massive graphs, Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, pp. 171--180. \bibitem{bia8} R. Alberich, J. Miro-Julia, and F. Rossello (2002), Marvel Universe looks almost like a real social network, cond-mat/0202174. \bibitem{bia9} R. Albert and A.-L. Barab\'{a}si (2000a), Topology of evolving networks: Local events and universality, {\em Phys. Rev. Lett.} {\bf 85}, 5234; cond-mat/0005085. \bibitem{bia10} R. Albert and A.-L. Barab\'{a}si (2000b), Dynamics of complex systems: Scaling laws for the period of Boolean networks, {\em Phys. Rev. Lett.} {\bf 84}, 5660. \bibitem{bia11} R. Albert and A.-L. Barab\'asi (2002), Statistical mechanics of complex networks, {\em Rev. Mod. Phys.} {\bf 47}, 74; cond-mat/0106096. \bibitem{bia12} R. Albert, H. Jeong, and A.-L. Barab\'{a}si (1999), Diameter of the world-wide web, {\em Nature} {\bf 401}, 130; cond-mat/9907038. \bibitem{bia13} R. Albert, H. Jeong, and A.-L. Barab\'{a}si (2000), Attack and error tolerance of complex networks, {\em Nature} {\bf 406}, 378; cond-mat/0008064. \bibitem{bia14} A. Aleksiejuk, J.A. Holyst, and D. Stauffer (2002), Ferromagnetic phase transition in Barab\'asi--Albert networks, {\em Physica} A {\bf 310}, 260; cond-mat/0112312. \bibitem{bia15} E. Almaas, R.V. Kulkarni, and D. Stroud (2002), Characterizing the structure of small-world networks, {\em Phys. Rev. Lett.} {\bf 88}, 098101; cond-mat/0109227. \bibitem{bia16} L.A.N. Amaral, A. Scala, M. Barth\'el\'emy, and H.E. Stanley (2000), Classes of small-world networks, {\em Proc. Natl Acad. Sci. USA} {\bf 97}, 11149; cond-mat/0001458. \bibitem{bia17} L.W. Ancel, M.E.J. Newman, M. Martin, and S. Schrag (2001), Applying network theory to epidemics: Control measures for outbreaks of {\em Mycoplasma pneumoniae}, Working Papers of Santa Fe Institute, 01-12-078, \\ http://www.santafe.edu/sfi/publications/Abstracts/01-12-078abs.html. \bibitem{bia18} T. Araujo, R.V. Mendes, and J. Seixas (2002), A dynamical characterization of the small world phase, cond-mat/0204573. \bibitem{bia19} L. de Arcangelis and H.J. Herrmann (2002), Self-organized criticality on small world networks, {\em Physica} A {\bf 308}, 545; cond-mat/0110239. \bibitem{bia20} A. Arenas, A. D\'{\i}az-Guilera, and R. Guimer\`a (2001), Communication in networks with hierarchical branching, {\em Phys. Rev. Lett.} {\bf 86}, 3196; cond-mat/ \linebreak 0009395. \bibitem{bia21} A. Asvanund, K. Clay, R. Krishnan, and M. Smith (2001), Bigger may not be better: An empirical analysis of optimal membership rules in peer-to-peer networks, cs.CY/0109106. %%B \bibitem{bib1} F. Bagnoli and M. Bezzi (2001), Small world effects in evolution, {\em Phys. Rev.} E {\bf 64}, 021914; cond-mat/0007458. \bibitem{bib2} P. Bak (1997), {\em How Nature Works} (Copernicus, New York). \bibitem{bib3} J.R. Banavar, A. Maritan, and A. Rinaldo (1999), Size and form in efficient transportation networks, {\em Nature} {\bf 99}, 130. \bibitem{bib4} A.-L. Barab\'{a}si (2002), {\em Linked: The New Science of Networks} (Perseus Pr, New York). \bibitem{bib5} A.-L. Barab\'{a}si and R. Albert (1999), Emergence of scaling in random networks, {\em Science} {\bf 286}, 509. \bibitem{bib6} A.-L. Barab\'{a}si, R. Albert, and H. Jeong (1999), Mean-field theory for scale-free random networks, {\em Physica} A {\bf 272}, 173. \bibitem{bib7} A.-L. Barab\'{a}si, R. Albert, H. Jeong, and G. Bianconi (2000), Power-law distribution of the World Wide Web: {\em response}, {\em Science} {\bf 287}, 2115a. \bibitem{bib8} A.-L. Barab\'asi, V.W. Freeh, H. Jeong, and J.B. Brockman (2001), Parasitic computing, {\em Nature} {\bf 412}, 894. \bibitem{bib9} A.-L. Barab\'asi, H. Jeong, Z. N\'eda, E. Ravasz, A. Schubert, and T. Vicsek (2002), Evolution of the social network of scientific collaborations, {\em Physica} A {\bf 311}, 590; cond-mat/0104162. \bibitem{bib10} A.-L. Barab\'asi, E. Ravasz, and T. Vicsek (2001), Deterministic scale-free networks, {\em Physica} A {\bf 299}, 559; cond-mat/0107419. \bibitem{bib11} A.-L. Barab\'{a}si and H.E. Stanley (1995), {\it Fractal Concepts of Surface Growth} (Cambridge University Press, Cambridge). \bibitem{bib12} M. Barahona and L.M. Pecora (2002), Synchronization in small-world systems, {\em Phys. Rev. Lett.} {\bf 89}, 054101; nlin.CD/0112023. \bibitem{bib13} P. Baran (1964), {\it Introduction to Distributed Communications Networks}, RM-3420-PR, August 1964, \\ http://www.rand.org/publications/RM/baran.list.html. \bibitem{bib14} A.D. Barbour and G. Reinert (2001), Small worlds, {\em Random Struct. Algorithms} {\bf 19}, 54; cond-mat/0006001. \bibitem{bib15} N. Barkai and S. Leibler (1997), Robustness in simple biochemical networks, {\em Nature} {\bf 387}, 913. \bibitem{bib16} A. Barrat (1999), Comment on ``Small-world networks: Evidence for a crossover picture'', cond-mat/9903323. \bibitem{bib17} A. Barrat and M. Weigt (2000), On the properties of small-world network models, {\em Eur. Phys. J.} B {\bf 13}, 547. \bibitem{bib18} M. Barth\'{e}l\'{e}my and L.A.N. Amaral (1999), Small-world networks: Evidence for a crossover picture, {\em Phys. Rev. Lett.} {\bf 82}, 3180; erratum: {\em Phys. Rev. Lett.} {\bf 82}, 5180. \bibitem{bib19} U. Bastolla, M. Porto, H.E. Roman, and M. Vendruscolo (2001), Connectivity of neutral networks and structural conservation in protein evolution, cond-mat/0107112. \bibitem{bib20} M. Bauer and D. Bernard (2002), A simple asymmetric evolving random network, cond-mat/0203232. \bibitem{bib21} M. Bauer and O. Golinelli (2001), Core percolation in random graphs: a critical phenomena analysis, {\em Eur. Phys. J.} B {\bf 24}, 39; cond-mat/0102011. \bibitem{bib22} R.J. Baxter (1982), {\em Exactly Solved Models in Statistical Mechanics} (Academic Press, London). \bibitem{bib23} A. Becskei and L. Serrano (2000), Engineering stability in gene networks by autoregulation, {\em Nature} {\bf 405}, 590. \bibitem{bib24} A. Bekessy, P. Bekessy, and J. Komlos (1972), Asymptotic enumeration of regular matrices, {\em Stud. Sci. Math. Hung.} {\bf 7}, 343. \bibitem{bib25} R. Belew (2000), {\em Finding Out About: A Cognitive Perspective on Search Engine Technology and the WWW} (Cambridge University Press, Cambridge). \bibitem{bib26} E.A. Bender and E.R. Canfield (1978), The asymptotic number of labelled graphs with given degree sequences, {\em J. Combinatorial Theor.} A {\bf 24}, 296. \bibitem{bib27} V.L. Berezinskii (1970), Destruction of long range order in one-dimensional and two-dimensional systems having a continuous symmetry group, {\em Sov. Phys. JETP} {\bf 32}, 493. \bibitem{bib28} J. Berg and M. L\"assig (2002), Correlated random networks, cond-mat/0205589. \bibitem{bib29} A.T. Bernardes, D. Stauffer, and J. Kert\'esz (2002), Election results and the Sznajd model on Barab\'asi network, {\em Eur. Phys. J.} B {\bf 25}, 123; cond-mat/0111147. \bibitem{bib30} U.S. Bhalla and R. Iyengar (1999), Emergent properties of networks of biological signaling pathways, {\em Science} {\bf 283}, 381. \bibitem{bib31} P. Bialas, L. Bogacz, Z. Burda, and D. Johnston (2000), Finitesize scaling of the balls in boxes model, {\em Nucl. Phys.} B {\bf 575}, 599; hep-lat/9910047. \bibitem{bib32} P. Bialas, Z. Burda, and D. Johnston (1997), Condensation in the Backgammon model, {\em Nucl. Phys.} B {\bf 493}, 505; cond-mat/9609264. \bibitem{bib33} P. Bialas, Z. Burda, and D. Johnston (1999), Phase diagram of the mean field model of simplicial gravity, {\em Nucl. Phys.} B {\bf 542}, 413; gr-qc/9808011. \bibitem{bib34} G. Bianconi (2002a), Mean-field solution of the Ising model on a Barab\'asi--Albert network, cond-mat/0204455. \bibitem{bib35} G. Bianconi (2002b), Growing Cayley trees described by Fermi distribution, cond-mat/0204506. \bibitem{bib36} G. Bianconi and A.-L. Barab\'{a}si (2001a), Competition and multiscaling in evolving networks, {\em Europhys. Lett.} {\bf 54}, 439; cond-mat/0011224. \bibitem{bib37} G. Bianconi and A.-L. Barab\'{a}si (2001b), Bose--Einstein condensation in complex networks, {\em Phys. Rev. Lett.} {\bf 86}, 5632; cond-mat/0011029. \bibitem{bib38} S. Bilke and C. Peterson (2001), Topological properties of citation and metabolic networks, {\em Phys. Rev.} E {\bf 64}, 036106; cond-mat/0103361. \bibitem{bib39} M. Bogu\~n\'a and R. Pastor-Satorras (2002), Epidemic spreading in correlated complex networks, cond-mat/0205621. \bibitem{bib40} B. Bollob\'as (1980), A probabilistic proof of an asymptotic formula for the number of labelled random graphs, {\em Eur. J. Combinatorics} {\bf 1}, 311. \bibitem{bib41} B. Bollob\'{a}s (1985), {\it Random Graphs} (Academic Press, London). \bibitem{bib42} B. Bollob\'{a}s (1998), {\it Modern Graph Theory} (Springer, New York). \bibitem{bib43} B. Bollob\'as and O. Riordan (2001), The diameter of a scale-free random graph, preprint. \bibitem{bib44} B. Bollob\'as, O. Riordan, J. Spencer, and G. Tusn\'ady (2001), The degree sequence of a scale-free random graph process, {\em Random Struct. Algorithms} {\bf 18}, 279. \bibitem{bib45} S. Bornholdt and H. Ebel (2001), World-Wide Web scaling exponent from Simon's 1955 model, {\em Phys. Rev.} E {\bf 64}, 035104; cond-mat/0008465. \bibitem{bib46} S. Bornholdt and T. Rohlf (2000), Topological evolution of dynamical networks: Global criticality from local dynamical rules, {\em Phys. Rev. Lett.} {\bf 84}, 6114, cond-mat/0003215. \bibitem{bib47} S. Bornholdt and H.G. Schuster (Eds.) (2002), {\em Handbook of Graphs and Networks}, (Wiley-VCH, Berlin). \bibitem{bib48} I. Bose (2002), Biological networks, cond-mat/0202192. \bibitem{bib49} J.P. Bouchaud and M. M\'ezard (2000), Wealth condensation in a simple model of economy, {\em Physica} A {\bf 282}, 536. \bibitem{bib50} J.P. Bouchaud and M. Potters (2000), {\em Theory of Financial Risks: From Statistical Physics to Risk Management} (Cambridge University Press, Cambridge). \bibitem{bib51} M. Brede and U. Behn (2001), Architecture of idiotypic networks: Percolation and scaling behaviour, {\em Phys. Rev.} E {\bf 64}, 011908. \bibitem{bib52} S. Brin and L. Page (1998), The anatomy of a large-scale hypertextual web search engine, Proceedings of the Seventh International World Wide Web Conference, pp. 107--117. \bibitem{bib53} A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener (2000), Graph structure in the web, {\em Comput. Netw.} {\bf 33}, 309. %%Proc. of the 9th WWW Conference (Amsterdam, 2000), 309. \bibitem{bib54} M. Buchanan (2002), {\em Nexus: Small Worlds and the Groundbreaking Science of Networks} (W.W. Norton \& Co, New York). \bibitem{bib55} A. Bunde and S. Havlin (1994), {\em Fractals in Science} (Springer, Berlin). \bibitem{bib56} Z. Burda, J.D. Correia, and A. Krzywicki (2001), Statistical ensemble of scale-free random graphs, {\em Phys. Rev.} E {\bf 64}, 046118; cond-mat/0104155. \bibitem{bib57} Z. Burda, D. Johnston, J. Jurkiewicz, M. Kaminski, M.A. Nowak, G. Papp, and I. Zahed (2002), Wealth condensation in Pareto macro-economies, {\em Phys. Rev.} E {\bf 65}, 026102; cond-mat/0101068. \bibitem{bib58} D. Butler (2000), Souped-up search engines, {\em Nature} {\bf 405}, 112. %%C \bibitem{bic1} G. Caldarelli, R. Marchetti, and L. Pietronero (2000), The fractal properties of Internet, {\em Europhys. Lett.} {\bf 52}, 386; cond-mat/0009178. \bibitem{bic2} D.S. Callaway, J.E. Hopcroft, J.M. Kleinberg, M.E.J. Newman, and S.H. Strogatz (2001), Are randomly grown graphs really random?, {\em Phys. Rev.} E {\bf 64}, 041902; cond-mat/0104546. \bibitem{bic3} D.S. Callaway, M.E.J. Newman, S.H. Strogatz, and D.J. Watts (2000), Network robustness and fragility: Percolation on random graphs, {\em Phys. Rev. Lett.} {\bf 85}, 5468; cond-mat/0007300. \bibitem{bic4} F. Calvo, J.P.K. Doye, and D.J. Wales (2002), Collapse of Lennard-Jones homopolymers: Size effects and energy landscapes, {\em J. Chem. Phys.} {\bf 116}, 2642. \bibitem{bic5} A. Calv\'o-Armengol and Y. Zenou (2001), Job matching, social network and word-of-mouth communication, nep/0111003. \bibitem{bic6} J. Camacho, R. Guimer\`a, and L.A.N. Amaral (2001), Analytical solution of a model for complex food webs, {\em Phys. Rev.} E {\bf 65}, 030901; cond-mat/0102127. \bibitem{bic7} J. Camacho, R. Guimer\`a, and L.A.N. Amaral (2002), Robust patterns in food web structure, {\em Phys. Rev. Lett.} {\bf 88}, 228102; cond-mat/0102127. \bibitem{bic8} A. Capocci, G. Caldarelli, R. Marchetti, and L. Pietronero (2001), Growing dynamics of Internet providers, {\em Phys. Rev.} E {\bf 64}, 035105; cond-mat/0106084. \bibitem{bic9} J.M. Carlson and J. Doyle (1999), Highly optimized tolerance: A mechanism for power laws in designed systems, {\em Phys. Rev.} E {\bf 60}, 1412. \bibitem{bic10} J.M. Carlson and J. Doyle (2000), Highly optimized tolerance: Robustness and design in complex systems, {\em Phys. Rev. Lett.} {\bf 84}, 2529. \bibitem{bic11} S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, S.R. Kumar, P. Raghavan, S. Rajagopalan and A. Tomkins (1999), Hypersearching the Web, {\em Sci. Am.} June, 54. \bibitem{bic12} K. Christensen, R. Donangelo, B. Koiller, and K. Sneppen (2000), Evolution of random networks, {\em Phys. Rev. Lett.} {\bf 81}, 2380. \bibitem{bic13} F.R.K. Chung (1997), {\em Spectral Graph Theory} (American Mathematical Society, Providence, RI). \bibitem{bic14} K.C. Claffy (1999), Internet measurement and data analysis: Topology, workload, performance and routing statistics, Proceedings of NAE workshop, \\ http://wwwdev.caida.org/outreach/papers/Nae/. \bibitem{bic15} K. Claffy, T.E. Monk, and D. McRobb (1999), Internet tomography, Nature web matters, 7 January, \\ http://www.helix.nature.com/webmatters/tomog/tomog.html. \bibitem{bic16} J.E. Cohen, F. Briand, and C.M. Newman (1990), {\em Community food webs: Data and theory} (Springer, Berlin). \bibitem{bic17} R. Cohen, D. ben-Avraham, and S. Havlin (2002a), Percolation critical exponents in scale-free networks, {\em Phys. Rev.} E {\bf 66}, 036113; cond-mat/0202259. \bibitem{bic18} R. Cohen, D. ben-Avraham, and S. Havlin (2002b), Efficient immunization of populations and computers, cond-mat/0207387. \bibitem{bic19} R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin (2000), Resilience of the Internet to random breakdowns, {\em Phys. Rev. Lett.} {\bf 85}, 4625; cond-mat/0007048. \bibitem{bic20} R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin (2001a), Breakdown of the Internet under intentional attack, {\em Phys. Rev. Lett.} {\bf 86}, 3682; cond-mat/0010251. \bibitem{bic21} R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin (2001b), Reply on the comment of S.N. Dorogovtsev and J.F.F. Mendes, {\em Phys. Rev. Lett.} {\bf 87}, 219802. \bibitem{bic22} R. Cohen and S. Havlin (2002), Ultra small world in scale-free networks, cond-mat/0205476. \bibitem{bic23} F. Comellas and M. Sampels (2000), Deterministic small-world communication networks, {\em Inf. Process. Lett.} {\bf 76}, 83. \bibitem{bic24} F. Comellas and M. Sampels (2001), Deterministic small-world networks, cond-mat/0111194. \bibitem{bic25} M. Copelli, R.M. Zorzenon dos Santos, and J.S. Sa Martins (2001), Emergence of hierarchy on a network of complementary agents, cond-mat/0110350. \bibitem{bic26} D. Cvetcovi\'c, M. Doob, and H. Sachs (1979), {\em Spectra of Graphs} (Cambridge University Press, Cambridge). %%D \bibitem{bid1} J. Dall and M. Christensen (2002), Random geometric graphs, {Phys. Rev.} E {\bf 66}, 016121; cond-mat/0203026. \bibitem{bid2} J. Davidsen, H. Ebel, and S. Bornholdt (2001), Emergence of a small world from local interactions: Modeling acquaintance networks, {\em Phys. Rev. Lett.} {\bf 88}, 128701; cond-mat/0108302. \bibitem{bid3} J. Dean and M.R. Henzinger (1999), Finding related pages in the World Wide Web, in Proceedings of the WWW8 Conference, Toronto, \\ http://www.unizh.ch/home/mazzo/reports/www8conf/2148/html. \bibitem{bid4} Z. Dezs\H o and A.-L. Barab\'asi (2002), %%Can we stop the AIDS epidemic?, Halting viruses in scale-free networks, {\em Phys. Rev.} E {\bf 65}, 055103; cond-mat/0107420. \bibitem{bid5} M. Dodge and R. Kitchin (2000), {\em Mapping Cyberspace}, (Routledge, London). \bibitem{bid6} M. Dodge and R. Kitchin (2001), {\em Atlas of Cyberspace}, (Addison-Wesley, Harlow). \bibitem{bid7} S.N. Dorogovtsev, A.V. Goltsev, and J.F.F. Mendes (2002a), Pseudofractal scale-free web, {\em Phys. Rev.} E {\bf 65}, 066122; cond-mat/0112143. \bibitem{bid8} S.N. Dorogovtsev, A.V. Goltsev, and J.F.F. Mendes (2002b), %%\\ Ising model on networks with an arbitrary distribution of connections, %%\\ {\em Phys. Rev.} E {\bf 66}, 016104; cond-mat/0203227. %%(\pageref{pr}) \bibitem{bid9} S.N. Dorogovtsev and J.F.F. Mendes (2000a), %%\\ Exactly solvable small-world network, %%\\ {\em Europhys. Lett.} {\bf 50}, 1; cond-mat/9907445. %%(\pageref{pr37}) \bibitem{bid10} S.N. Dorogovtsev and J.F.F. Mendes (2000b), %%\\ Evolution of networks with aging of sites, %%\\ {\em Phys. Rev.} E {\bf 62}, 1842; cond-mat/0001419. %%(\pageref{pr}) \bibitem{bid11} S.N. Dorogovtsev and J.F.F. Mendes (2000c), %%\\ Scaling behaviour of developing and decaying networks, %%\\ {\em Europhys. Lett.} {\bf 52}, 33; cond-mat/0005050. %%(\pageref{pr}) \bibitem{bid12} S.N. Dorogovtsev and J.F.F. Mendes (2001a), Effect of the accelerated growth of communications networks on their structure, {\em Phys. Rev.} E {\bf 63}, 025101; cond-mat/0009065. %%(\pageref{pr26}) \bibitem{bid13} S.N. Dorogovtsev and J.F.F. Mendes (2001b), %%\\ Scaling properties of scale-free evolving networks: Continuum approach, %%\\ {\em Phys. Rev.} E {\bf 63}, 056125; cond-mat/0012009. %%(\pageref{pr}) \bibitem{bid14} S.N. Dorogovtsev and J.F.F. Mendes (2001c), %%\\ Comment on ``Breakdown of the Internet under Intentional Attack'', %%\\ {\em Phys. Rev. Lett.} {\bf 87}, 219801; cond-mat/0109083. %%(\pageref{pr}) \bibitem{bid15} S.N. Dorogovtsev and J.F.F. Mendes (2001d), %%\\ Language as an evolving Word Web, {\em Proc. R. Soc. London} B {\bf 268}, 2603; %%\\ cond-mat/0105093. %%(\pageref{pr4a2}) \bibitem{bid16} S.N. Dorogovtsev and J.F.F. Mendes (2002a), Evolution of networks, {\em Adv. Phys.} {\bf 51}, 1079; cond-mat/0106144. \bibitem{bid17} S.N. Dorogovtsev and J.F.F. Mendes (2002b), %%\\ Accelerated growth of networks, %%\\ {\em Handbook of Graphs and Networks: From the Genome to the Internet}, ed. S. Bornholdt and H.G. Schuster (Wiley-VCH, Berlin), pp. 320--343; cond-mat/0204102. \bibitem{bid18} S.N. Dorogovtsev, J.F.F. Mendes, and A.N. Samukhin (2000a), %%\\ Structure of growing networks with preferential linking, %%\\ {\em Phys. Rev. Lett.} {\bf 85}, 4633. %%(\pageref{pr13a1}) %%, cond-mat/0004434. %%(\pageref{pr}) \bibitem{bid19} S.N. Dorogovtsev, J.F.F. Mendes, and A.N. Samukhin (2000b), %%\\ WWW and Internet models from 1955 till our days and the ``popularity is attractive'' principle, %%\\ cond-mat/0009090. %%(\pageref{pr}) \bibitem{bid20} S.N. Dorogovtsev, J.F.F. Mendes, and A.N. Samukhin (2000d), %%\\ Growing networks with heritable connectivity of nodes, %%\\ cond-mat/0011077. %%(\pageref{pr}) \bibitem{bid21} S.N. Dorogovtsev, J.F.F. Mendes, and A.N. Samukhin (2001a), %%\\ Giant strongly connected component of directed networks, %%\\ {\em Phys. Rev.} E {\bf 64}, 025101; cond-mat/0103629. %%(\pageref{pr41}, \pageref{pr41a1}) \bibitem{bid22} S.N. Dorogovtsev, J.F.F. Mendes, and A.N. Samukhin (2001b), %%\\ Anomalous percolation properties of growing networks, %%\\ {\em Phys. Rev.} E {\bf 64}, 066110; cond-mat/0106141. %%(\pageref{pr19b}) \bibitem{bid23} S.N. Dorogovtsev, J.F.F. Mendes, and A.N. Samukhin (2001c), %%\\ Generic scale of `scale-free' networks, %%\\ {\em Phys. Rev.} E {\bf 63}, 062101; cond-mat/0011115. %%(\pageref{pr}) \bibitem{bid24} S.N. Dorogovtsev, J.F.F. Mendes, and A.N. Samukhin (2002a), %%\\ Multifractal properties of growing networks, %%\\ {\em Europhys. Lett.} {\bf 57}, 334; cond-mat/0106142. %%(\pageref{pr}) \bibitem{bid25} S.N. Dorogovtsev, J.F.F. Mendes, and A.N. Samukhin (2002b), Principles of statistical mechanics of random networks, cond-mat/0204111. \bibitem{bid26} S.N. Dorogovtsev, J.F.F. Mendes, and A.N. Samukhin (2002c), Modern architecture of random graphs: Constructions and correlations, cond-mat/0206467. \bibitem{bid27} J.P.K. Doye (2002), The network topology of a potential energy landscape: A static scale-free network, {\em Phys. Rev. Lett.} {\bf 88}, 238701; cond-mat/0201430. \bibitem{bid28} J. Doyle and J.M. Carlson (2000), Power laws, highly optimized tolerance, and generalized source coding, {\em Phys. Rev. Lett.} {\bf 84}, 5656. \bibitem{bid29} J.A. Dunne, R.J. Williams, and N.D. Martinez (2002a), Small networks but not small worlds: Unique aspects of food web structure, {\em Proc. Natl Acad. Sci. USA} {\bf 99}, October; Working Papers of Santa Fe Institute, 02-03-010, \\ http://www.santafe.edu/sfi/publications/wpabstract/200203010. \bibitem{bid30} J.A. Dunne, R.J. Williams, and N.D. Martinez (2002b), Network topology and species loss in food webs: Robustness increases with connectance, Working Papers of Santa Fe Institute, 02-03-013, \\ http://www.santafe.edu/sfi/publications/wpabstract/200203013. %%E \bibitem{bie1} H. Ebel, L.-I. Mielsch, and S. Bornholdt (2002), Scale-free topology of e-mail networks, {\em Phys. Rev.} E {\bf 66}, October; cond-mat/0201476. \bibitem{bie2} J.-P. Eckmann and E. Moses (2001), %%\\ Curvature of co-links uncovers hidden thematic layers in the World Wide Web, %%\\ cond-mat/0110338. %%(\pageref{pr}) \bibitem{bie3} L. Egghe and R. Rousseau (1990), {\em Introduction to Informetrics: Quantitative Methods in Library, Documentation and Information Science} (Elsevier, Amsterdam). %%(\pageref{pr}) \bibitem{bie4} M.B. Elowitz and S. Leibler (2000), A synthetic oscillatory network of transcriptional regulators, {\em Nature} {\bf 403}, 335. %%(\pageref{pr}) \bibitem{bie5} D. Eppstein and J. Wang (2002), %%\\ A steady state model for graph power laws, %%\\ cs.DM/0204001. %%(\pageref{pr}) \bibitem{bie6} P. Erd\H os and A. R\'enyi (1959), On random graphs, {\em Publ. Math. Debrecen} {\bf 6}, 290. \bibitem{bie7} P. Erd\H os and A. R\'enyi (1960), On the evolution of random graphs, {\em Publ. Math. Inst. Hung. Acad. Sci.} {\bf 5}, 17. \bibitem{bie8} G. Ergun (2002), Human sexual contact network as a bipartite graph, {\em Physica} A {\bf 308}, 483; cond-mat/0111323. \bibitem{bie9} G. Ergun and G.J. Rodgers (2002), Growing random networks with fitness, {\em Physica} A {\bf 303}, 261; cond-mat/0103423. %%F \bibitem{bif1} M. Faloutsos, P. Faloutsos, and C. Faloutsos (1999), On power-law relationships of the Internet topology, {\em Comput. Commun. Rev.} {\bf 29}, 251. \bibitem{bif2} I.J. Farkas, I. Der\'enyi, A.-L. Barab\'asi, and T. Vicsek (2001), Spectra of ``Real-World'' graphs: Beyond the semi-circle law, {\em Phys. Rev.} E {\bf 64}, 026504; cond-mat/0102335. \bibitem{bif3} I.J. Farkas, H. Jeong, T. Vicsek, A.-L. Barab\'asi, and Z.N. Oltvai (2002), %%\\ The topology of the transcription regulatory network in the yeast, {\em S. cerevisiae}, %%\\ cond-mat/0205181. %%(\pageref{pr}) \bibitem{bif4} R. Ferrer i Cancho, C. Janssen, and R. Sol\'e (2001), %%\\ The topology of technology graphs: Small world patterns in electronic circuits, %%\\ {\em Phys. Rev. E} {\bf 64}, 046119. %%%%Working Papers of Santa Fe Institute, 01-05-029, %%%%http://www.santafe.edu/sfi/publications/Abstracts/01-05-029abs.html. \bibitem{bif5} R. Ferrer i Cancho and R.V. Sol\'e (2001a), %%\\ The small-world of human language, %%\\ Proc. R. Soc. B {\bf 268}, 2261. \bibitem{bif6} R. Ferrer i Cancho and R.V. Sol\'e (2001b), Optimization in complex networks, cond-mat/0111222. \bibitem{bif7} R. Ferrer i Cancho and R. Sol\'e (2001c), %%\\ Two regimes in the frequency of words and the origins of complex lexicons: Zipf's law revised, {\em J. Quant. Linguist.} {\bf 8}, 165. %%Working Papers of Santa Fe Institute, 00-12-068, %%http://www.santafe.edu/sfi/publications/Abstracts/00-12-068abs.html. \bibitem{bif8} P. Flajolet, D.E. Knuth, and B. Pittel (1989), The first cycles in an evolving graph, {\em Discrete Math.} {\bf 75}, 167. \bibitem{bif9} P.J. Flory (1941), Molecular size distribution in three dimensional polymers: I. Gelation; II. Trifunctional branching units; III. Tetrafunctional branching units, {\em J. Am. Chem. Soc.} {\bf 63}, 3083; 3091; 3096. \bibitem{bif10} P.J. Flory (1971), {\em Principles of Chemistry} (Cornell University Press, Ithaca, NY). \bibitem{bif11} P.J. Flory (1976), %%\\ Statistical thermodynamics of random networks, %%\\ {\em Proc. R. Soc. London} A {\bf 351}, 351. \bibitem{bif12} C.M. Fortuin and P.W. Kasteleyn (1972), On the random-cluster model. \linebreak I. Introduction and relation to other models, {\em Physica} {\bf 57}, 536. \bibitem{bif13} J.J. Fox and C.C. Hill (2001), From topology to dynamics in biochemical networks, {\em Chaos} {\bf 11}, 809. \bibitem{bif14} S.M. Fraser and C.M. Reidys (1997), Evolution of random catalytic networks, Proceedings of the 4th European Conference on Artificial Life, pp. 92--100. \bibitem{bif15} L.C. Freeman (1977), A set of measures of centrality based on betweenness, {\em Sociometry} {\bf 40}, 35. \bibitem{bif16} H. Fuks and A.T. Lawniczak (1999), Performance of data networks with random links, %%%{\em Mathematics and Computers in Simulation} {\em Math. Comput. Simulation} {\bf 51}, 103; adap-org/9909006. %%G \bibitem{big1} E. Garfield (1972), Citation analysis as a tool in journal evaluation, {\em Science} {\bf 178}, 471. \bibitem{big2} E. Garfield (1979), {\em Citation Indexing: Its Theory and Application in Science} (Wiley, New York). %%(\pageref{pr}) \bibitem{big3} R. Gibrat (1931), {\em Les in\'egalit\'es \'economiques} (Sirey, Paris). %%(\pageref{pr}) \bibitem{big4} D. Gibson, J.M. Kleinberg, and P. Raghavan (1998), %%\\ Inferring Web communities from link topology, %%\\ Proceedings of the 9th ACM Conference on Hypertext and Hypermedia, 225--234. %%(\pageref{pr}) \bibitem{big5} N. Gilbert (1997), A simulation of the structure of academic science, {\em Sociol. Res. Online} {\bf 2}, 2. %%(\pageref{pr}) \bibitem{big6} M. Girvan and M.E.J. Newman (2002), %%\\ Community structure in social and biological networks, %%\\ {\em Proc. Natl Acad. Sci. USA} {\bf 99}, 8271; cond-mat/0112110. %%(\pageref{pr}) \bibitem{big7} M. Gitterman (2000), %%\\ Small-world phenomena in physics: The Ising model, %%\\ {\em J. Phys.} A {\bf 33}, 8373. %%(\pageref{pr}) \bibitem{big8} L. Glass and C. Hill (1998), %%\\ Ordered and disordered dynamics in random networks, %%\\ {\em Europhys. Lett.} {\bf 41}, 599. %%(\pageref{pr}) \bibitem{big9} P.M. Gleiss, P.F. Stadler, A. Wagner, and D.A. Fell (2000), %%\\ Small cycles in small worlds, %%\\ cond-mat/0009124. %%(\pageref{pr}) \bibitem{big10} K.-I. Goh, B. Kahng, and D. Kim (2001a), %%\\ Spectra and eigenvectors of scale-free networks, %%\\ {\em Phys. Rev.} E {\bf 64}, 051903; cond-mat/0103337. %%(\pageref{pr}) \bibitem{big11} K.-I. Goh, B. Kahng, and D. Kim (2001b), %%\\ Universal behavior of load distribution in scale-free networks, %%\\ {\em Phys. Rev. Lett.} {\bf 87}, 278701; cond-mat/0106565. %%(\pageref{pr}) \bibitem{big12} K.-I. Goh, B. Kahng, and D. Kim (2002), %%\\ Fluctuation-driven dynamics of the Internet topology, %%\\ {\em Phys. Rev. Lett.} {\bf 88}, 108701; cond-mat/0108031. %%(\pageref{pr}) \bibitem{big13} K.-I. Goh, E.S. Oh, H. Jeong, B. Kahng, and D. Kim (2002), Classification of scale free networks, {\em Proc. Natl Acad. Sci. USA} {\bf 99}, October; cond-mat/0205232. \bibitem{big14} A.V. Goltsev, S.N. Dorogovtsev, and J.F.F. Mendes (2002), %%\\ Critical phenomena in networks, %%\\ cond-mat/0204596. %%(\pageref{pr}) \bibitem{big15} R. Govindan and H. Tangmunarunkit (2000), %%\\ Heuristics for Internet map discovery, %%\\ Proceedings of the 2000 IEEE INFOCOM Conference, Tel Aviv, Israel, March, pp. 1371--1380, http://citeseer.nj.nec.com/govindan00heuristics.html. %%(\pageref{pr}) \bibitem{big16} P. Grassberger (1983), On the critical behavior of the general epidemic process and dynamical percolation, {\em Math. Biosci.} {\bf 63}, 157. %%(\pageref{pr}) \bibitem{big17} X. Guardiola, A. D\'{\i}az-Guilera, C. J. Perez, A. Arenas, and M. Llas (2002), %%\\ Modelling diffusion of innovations in a social network, %%\\ cond-mat/0204141. %%(\pageref{pr}) \bibitem{big18} V. Gudkov and J.E. Johnson (2001), %%\\ New approach for network monitoring and intrusion detection, %%\\ cs.CR/0110019. %%(\pageref{pr}) \bibitem{big19} R. Guimer\`a, A. Arenas, and A. D\'{\i}az-Guilera (2001), Communication and optimal hierarchical networks, Physica A {\bf 299}, 247; cond-mat/0103112. \bibitem{big20} N. J. Gunther (2002), %%\\ Hypernets -- Good (G)news for Gnutella, %%\\ cs.PF/0202019. %%(\pageref{pr}) %%H \bibitem{bih1} J. Han and W. Li (2002), %%\\ How structure affects power-law behavior, %%\\ cond-mat/0205259. %%(\pageref{pr}) \bibitem{bih2} T.E. Harris (1989), {\em The Theory of Branching Processes} (Dover, New York). %%(\pageref{pr}) \bibitem{bih3} J.H. Holland (2001), %%\\ Exploring the evolution of complexity in signaling networks, %%\\ Working Papers of Santa Fe Institute, 01-10-062, \\ http://www.santafe.edu/sfi/publications/Abstracts/01-10-062abs.html. %%(\pageref{pr}) \bibitem{bih4} P. Holme, M. Huss, and H. Jeong (2002), %%\\ Subnetwork hierarchies of biochemical pathways, %%\\ cond-mat/0206292. \bibitem{bih5} P. Holme and B.J. Kim (2001), %%\\ Growing scale-free networks with tunable clustering, %%\\ {\em Phys. Rev.} E {\bf 65}, 026135; cond-mat/0110452. %%(\pageref{pr}) \bibitem{bih6} P. Holme and B.J. Kim (2002), Vertex overload breakdown in evolving networks, {\em Phys. Rev.} E {\bf 65}, 066109; cond-mat/0204120. \bibitem{bih7} P. Holme, B.J. Kim, C.N. Yoon, and S.K. Han (2002), %%\\ Attack vulnerability of complex networks, %%\\ {\em Phys. Rev.} E {\bf 65}, 056109; cond-mat/0202410. %%(\pageref{pr}) \bibitem{bih8} H. Hong, M.Y. Choi, and B.J. Kim (2002a), %%\\ Synchronization on small-world networks, %%\\ {\em Phys. Rev.} E {\bf 65}, 026139; cond-mat/0110359. %%(\pageref{pr}) \bibitem{bih9} H. Hong, M.Y. Choi, and B.J. Kim (2002b), %%\\ Phase ordering on small-world networks with nearest-neighbor edges, %%\\ {\em Phys. Rev.} E {\bf 65}, 047104; cond-mat/ \linebreak 0203177. %%(\pageref{pr}) \bibitem{bih10} H. Hong, B.J. Kim, and M.Y. Choi (2002), Comment on `Ising model on a small world network', {\em Phys. Rev.} E {\bf 66}, 018101; cond-mat/0204357. %%(\pageref{pr}) \bibitem{bih11} M. H\"ornquist (2001), %%\\ Scale-free networks are not robust under neutral evolution, %%\\ {\em Europhys. Lett.} {\bf 56}, 461. %%(\pageref{pr}) \bibitem{bih12} B. A. Huberman (2001), {\em The Laws of the Web}, (MIT Press, Cambridge, MA). %%(\pageref{pr}) \bibitem{bih13} B.A. Huberman and L.A. Adamic (1999), %%\\ Growth dynamics of the World-Wide Web, %%\\ {\em Nature} {\bf 401}, 131. %%(\pageref{pr}) \bibitem{bih14} B.A. Huberman, P.L.T. Pirolli, J.E. Pitkow, and R.J. Lukose (1998), %%\\ Strong regularities in World Wide Web surfing, %%\\ {\em Science} {\bf 280}, 95. %%(\pageref{pr}) \bibitem{bih15} C. Huiterna (2000), %%\\ {\em Routing in the Internet}, %%\\ 2nd ed. (Prentice Hall, Upper Saddle River, NJ). %%I \bibitem{bii1} M. Ipsen and A.S. Mikhailov (2001), %%\\ Evolutionary reconstruction of networks, %%\\ nlin.AO/0111023. \bibitem{bii2} T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki (2001), A~comprehensive two-hybrid analysis to explore the yeast protein interactome, {\em Proc. Natl Acad. Sci. USA} {\bf 98}, 4569. \bibitem{bii3} T. Ito, K. Tashiro, S. Muta, R. Ozawa, T. Chiba, M. Nishizawa, K. Yamamoto, S. Kuhara, and Y. Sakaki (2000), Toward a protein--protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins, {\em Proc. Natl Acad. Sci. USA} {\bf 97}, 1143. %%J \bibitem{bij1} S. Jain and S. Krishna (1998), %%\\ Autocatalytic sets and the growth of complexity in an evolutionary model, %%\\ {\em Phys. Rev. Lett.} {\bf 81}, 5684; adap-org/9809003. \bibitem{bij2} S. Jain and S. Krishna (2001), A model for the emergence of cooperation, interdependence and structure in evolving networks, {\em Proc. Natl Acad. Sci. USA} {\bf 98}, 543; nlin.AO/0005039. %%(\pageref{pr}) \bibitem{bij3} S. Jain and S. Krishna (2002), Crashes, recoveries, and 'Core-Shifts' in a model of evolving networks, from real data to community assembly models, {\em Phys. Rev.} E {\bf 65}, 026103. %%Working Papers of Santa Fe Institute, 01-12-075, %%\\ %%http://www.santafe.edu/sfi/publications/Abstracts/01-12-075abs.html. \bibitem{bij4} S. Jalan and R.E. Amritkar (2002), %%\\ Self-organized and driven phase synchronization in coupled map scale free networks, %%\\ nlin.AO/0201051. %%(\pageref{pr}) \bibitem{bij5} W. Janke, D.A. Johnston, and M. Stathakopoulos (2002), %%\\ Kert\'esz on fat graphs?, %%\\ cond-mat/0201496. %%(\pageref{pr}) \bibitem{bij6} S. Janson, D.E. Knuth, T. Luczak, and B. Pittel (1993), The birth of the giant component, {\em Random Struct. Algorithms} {\bf 4}, 233. \bibitem{bij7} S. Janson, T. Luczak, and A. Rucinski (2000), {\em Random Graphs} (Wiley, New York). \bibitem{bij8} F. Jasch and A. Blumen (2001), %%\\ Target problem on small-world networks, %%\\ {\em Phys. Rev.} E {\bf 63}, 041108. %%(\pageref{pr}) \bibitem{bij9} H. Jeong, A.-L. Barab\'asi, B. Tombor, and Z.N. Oltvai (2001), %%\\ The global organization of cellular networks, %%\\ Proceedings of Workshop on Computation of Biochemical Pathways and Genetic Networks, Heidelberg. \bibitem{bij10} H. Jeong, S.P. Mason, A.-L. Barab\'asi, and Z.N. Oltvai (2001), %%\\ Lethality and centrality in protein networks, %%\\ {\em Nature} {\bf 411}, 41; cond-mat/0105306. %%(\pageref{pr4o5}) \bibitem{bij11} H. Jeong, Z. N\'eda, and A.-L. Barab\'asi (2001), %%\\ Measuring preferential attachment for evolving networks, %%\\ cond-mat/0104131. %%(\pageref{pr}) \bibitem{bij12} H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A-L. Barab\'{a}si (2000), %%\\ The large-scale organization of metabolic networks, %%\\ {\em Nature} {\bf 407}, 651. %%(\pageref{pr4o4}) \bibitem{bij13} S. Jespersen and A. Blumen (2000), %%\\ Small-world networks: Links with long-tailed distributions, {\em Phys. Rev.} E {\bf 62}, 6270. %%\\ cond-mat/0009082. %%(\pageref{pr}) \bibitem{bij14} S. Jespersen, I.M. Sokolov, and A. Blumen (2000a), %%\\ Small-world rose networks as models of cross-linked polymers, %%\\ {\em J. Chem. Phys.} {\bf 113}, 7652; cond-mat/0004392. %%(\pageref{pr}) \bibitem{bij15} S. Jespersen, I.M. Sokolov, and A. Blumen (2000b), %%\\ Relaxation properties of small-world networks, %%\\ {\em Phys. Rev.} E {\bf 62}, 4405; cond-mat/0004214. %%(\pageref{pr}) \bibitem{bij16} E.M. Jin, M. Girvan, and M.E.J. Newman (2001), Structure of growing social networks, {\em Phys. Rev.} E {\bf 64}, 046132. \bibitem{bij17} J. Jost and M.P. Joy (2002), %%\\ Evolving networks with distance preferences, %%\\ cond-mat/0202343. %%(\pageref{pr}) \bibitem{bij18} S. Jung, S. Kim, and B. Kahng (2002), A geometric fractal growth model for scale free networks, Phys. Rev. E {\bf 65}, 056101; cond-mat/0112361. %%K \bibitem{bik1} B. Kahng, Y. Park, and H. Jeong (2001), %%// Robustness of the in-degree exponent for the World Wide Web, %%// cond-mat/0112358. %%(\pageref{pr}) \bibitem{bik2} A.R. Kansal and S. Torquato (2001), %%\\ Globally and locally minimal weight spanning tree networks, %%\\ {\em Physica} A {\bf 301}, 601; cond-mat/0112149. %%(\pageref{pr}) \bibitem{bik3} V. Karimipour and A. Ramzanpour (2002), %%\\ Correlation effects in a simple small-world network, %%\\ {\em Phys. Rev.} E {\bf 65}, 036122; cond-mat/0012313. %%(\pageref{pr}) \bibitem{bik4} P.W. Kasteleyn and C.M. Fortuin (1969), Phase transitions in lattice systems with random local properties, {\em Phys. Soc. Jpn (Suppl.)} {\bf 26}, 11. \bibitem{bik5} R. Kasturirangan (1999), %%\\ Multiple scales in small-world graphs, %%\\ cond-mat/ \linebreak 9904055. %%(\pageref{pr}) \bibitem{bik6} S.A. Kauffman (1969), %%\\ Metabolic stability and epigenesis in randomly constructed genetic nets, %%\\ {\em J. Theor. Biol.} {\bf 22}, 437. \bibitem{bik7} S.A. Kauffman (1993), {\em The Origins of Order: Self-organization and Selection in Evolution} (Oxford University Press, New York, Oxford). \bibitem{bik8} S.A. Kauffman (1995), {\it At Home in the Universe: The Search for the Laws of Self-Organization and Complexity } (Oxford University Press, Oxford). %%(\pageref{pr}) \bibitem{bik9} S.A. Kauffman (2000), {\it Investigations} (Oxford University Press, Oxford). %%(\pageref{pr}) \bibitem{bik10} B.J. Kim, H. Hong, P. Holme, G.S. Jeon, P. Minnhagen, and M.Y. Choi (2001), XY model in small-world networks, {\em Phys. Rev.} E {\bf 64}, 056135; cond-mat/ \linebreak 0108392. \bibitem{bik11} B.J. Kim, C.N. Yoon, S.K. Han, and H. Jeong (2001), Path finding strategies in scale-free networks, {\em Phys. Rev.} E {\bf 65}, 027103; cond-mat/0111232. \bibitem{bik12} H.-J. Kim, Y. Lee, I.-M. Kim, and B. Kahng (2001), %%\\ Scale-free networks in financial correlations, %%\\ cond-mat/0107449. \bibitem{bik13} J. Kim, P.L. Krapivsky, B. Kahng, and S. Redner (2002), %%\\ Evolving protein interaction networks, %%\\ cond-mat/0203167. \bibitem{bik14} O. Kinouchi, A.S. Martinez, G.F. Lima, G.M. Lourenco, and S. Risau-Gusman (2001), %%\\ Deterministic walks in random networks: An application to thesaurus graphs, %%\\ cond-mat/0110217. %%(\pageref{pr}) \bibitem{bik15} J.M. Kleinberg (1998), Authoritative sources in a hyperlinked environment, Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, %%%January, San Francisco, California, pp. 668--677. \bibitem{bik16} J.M. Kleinberg (1999a), Hubs, authorities, and communities, {\em ACM Comput. Surv.} {\bf 31}, No. 4, article No. 5. \bibitem{bik17} J. Kleinberg (1999b), The small-world phenomenon: An algorithmic perspective, Cornell University Computer Science Department Technical Report 99-1776, http://www.cs.cornell.edu/home/kleinber/swn.ps. %%(\pageref{pr}) \bibitem{bik18} J.M. Kleinberg (2000), %%\\ Navigation in a small world, %%\\ {\em Nature} {\bf 406}, 845. %%(\pageref{pr}) \bibitem{bik19} J. Kleinberg, R. Kumar, P. Raphavan, S. Rajagopalan, and Tomkins (1999), %%\\ The Web as a graph: measurements, models, and methods, %%\\ Proceedings of the 5th International Conference on Combinatorics and Computing. \bibitem{bik20} K. Klemm and V.M. Egu\'{\i}luz (2002a), Highly clustered scale-free networks, {\em Phys. Rev.} E {\bf 65}, 036123; cond-mat/0107606. \bibitem{bik21} K. Klemm and V.M. Egu\'{\i}luz (2002b), Growing scale-free networks with small-world behavior, {\em Phys. Rev.} E {\bf 65}, 057102; cond-mat/0107607. \bibitem{bik22} D.E. Knuth (1977), {\it The art of computer programming} vol. 1 {\em Fundamental algorithms} (Addison-Wesley, Reading, MA). \bibitem{bik23} J.M. Kosterlitz and D.J. Thouless (1973), %%\\ Ordering, metastability and phase transitions in two-dimensional systems, %%\\ {\em J. Phys.} C {\bf 6}, 1181. %%(\pageref{pr}) \bibitem{bik24} M. Kotrla, F. Slanina, and J. Steiner (2002), %%\\ Dynamic scaling and universality in evolution of fluctuating random networks, %%\\ cond-mat/0204476. %%(\pageref{pr}) \bibitem{bik25} P.L. Krapivsky and S. Redner (2001), %%\\ Organization of growing random networks, %%\\ {\em Phys. Rev.} E {\bf 63}, 066123; cond-mat/0011094. \bibitem{bik26} P.L. Krapivsky, S. Redner, and F. Leyvraz (2000), %%\\ Connectivity of growing random network, %%\\ {\em Phys. Rev. Lett.} {\bf 85}, 4629; cond-mat/0005139. %%(\pageref{pr13a2}, \pageref{pr16}) \bibitem{bik27} P.L. Krapivsky, G.J. Rodgers, and S. Redner (2001), %%\\ Degree distributions of growing networks, %%\\ {\em Phys. Rev. Lett.} {\bf 86}, 5401; cond-mat/0012181. %%(\pageref{pr}) \bibitem{bik28} V. Krebs (2002), Mapping networks of terrorist cells, {\em Connections} {\bf 24}, 43; net/0203001. \bibitem{bik29} A. Krzywicki (2001), Defining statistical ensembles of random graphs, cond-mat/0110574. \bibitem{bik30} R.V. Kulkarni, E. Almaas, and D. Stroud (1999), %%\\ Evolutionary dynamics in the Bak-Sneppen model on small-world networks, %%\\ cond-mat/9905066. %%(\pageref{pr}) \bibitem{bik31} R.V. Kulkarni, E. Almaas, and D. Stroud (2000), %%\\ Exact results and scaling properties of small-world networks, %%\\ {\em Phys. Rev. E} {\bf 61}, 4268; cond-mat/9908216. \bibitem{bik32} L. Kullmann and J. Kert\'{e}sz (2001a), %%\\ Preferential growth: Exact solution of the time-dependent distributions, %%\\ {\em Phys. Rev.} E {\bf 63}, 051112; cond-mat/0012410. \bibitem{bik33} L. Kullmann and J. Kert\'esz (2001b), %%\\ Preferential growth: Solution and application to modelling stock market, %%\\ {\em Physica} A {\bf 299}, 121; cond-mat/0105473. \bibitem{bik34} L. Kullmann, J. Kert\'esz, and K. Kaski (2001), %%\\ Time dependent cross correlations between different stock returns: A directed network of influence, %%\\ {\em Phys. Rev.} E {\bf 64}, 057105; cond-mat/0203256. %%(\pageref{pr}) \bibitem{bik35} R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E. Upfal (2000a), The Web as a graph, Proceedings of the 19th ACM Symposium on Principles of Database Systems, pp. 1--10. \bibitem{bik36} R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and E. Upfal (2000b), Stochastic models for the web graph, Proceedings of the 41th IEEE Symposium on Foundations of Computer Science. \bibitem{bik37} R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins (1999a), Extracting large-scale knowledge bases from the web, Proceedings of the 25th VLDB Conference, Edinburgh, pp. 639--650. \bibitem{bik38} R. Kumar, P. Raphavan, S. Rajagopalan, and A. Tomkins (1999b), Trawling the Web for emerging cyber-communities, \\ http://www.almaden.ibm.com/cs/k53/trawling.ps. \bibitem{bik39} M. Kuperman and G. Abramson (2001a), Complex structures in generalized small worlds, {\em Phys. Rev.} E {\bf 64}, 047103. \bibitem{bik40} M. Kuperman and G. Abramson (2001b), Small world effect in an epidemiological model, {\em Phys. Rev. Lett.} {\bf 86}, 2909. \bibitem{bik41} M. Kuperman and D. Zanette (2002), Stochastic resonance in a model of opinion formation on small-world networks, {\em Eur. Phys. J.} B {\bf 26}, 387; cond-mat/0111289. %%L \bibitem{bil1} L.F. Lago-Fern\'andez, R. Huerta, F. Corbacho, and J.A. Sig\"uenza (2000), Fast response and temporal coherent oscillations in small-world networks, {\em Phys. Rev. Lett.} {\bf 84}, 2758; cond-mat/9909379. \bibitem{bil2} J. Laherr\`ere and D. Sornette (1998), Stretched exponential distributions in nature and economy: Fat tails with characteristic scales, {\em Eur. Phys. J.} B {\bf 2}, 525; cond-mat/9801293. \bibitem{bil3} J. Lahtinen, J. Kert\'esz, and K. Kaski (2001), Scaling of random spreading in small world networks, {\em Phys. Rev.} E {\bf 64}, 057105; cond-mat/0108199. \bibitem{bil4} J. Lahtinen, J. Kert\'esz, and K. Kaski (2002), Random spreading phenomena in annealed small world networks, {\em Physica} A {\bf 311}, 571; cond-mat/0110365. \bibitem{bil5} D. Lancaster (2002), Cluster growth in two growing network models, {\em J. Phys.} A {\bf 35}, 1179; cond-mat/0110111. \bibitem{bil6} M. L\"{a}ssig, U. Bastolla, S.C. Manrubia, and A. Valleriani (2001), The shape of ecological networks, {\em Phys. Rev. Lett.} {\bf 86}, 4418; nlin.AO/0101026. \bibitem{bil7} V. Latora and M. Marchiori (2001), Efficient behaviour of small-world networks, {\em Phys. Rev. Lett.} {\bf 87}, 198701; cond-mat/0101396. \bibitem{bil8} V. Latora and M. Marchiori (2002a), Is the Boston subway a small-world network?, cond-mat/0202299. \bibitem{bil9} V. Latora and M. Marchiori (2002b), Economic small-world behavior in weighted networks, cond-mat/0204089. \bibitem{bil10} S. Lawrence (2000), Context in Web search, {\em IEEE Data Eng. Bull.} {\bf 23}, 25. \bibitem{bil11} S. Lawrence and C.L. Giles (1998a), Searching the World Wide Web, {\em Science} {\bf 280}, 98. \bibitem{bil12} S. Lawrence and C.L. Giles (1998b), Context and page analysis for improved Web search, {\em IEEE Internet Comput.} {\bf 2}, 38. \bibitem{bil13} S. Lawrence and C.L. Giles (1999a), Accessibility of information on the web, {\em Nature} {\bf 400}, 107. \bibitem{bil14} S. Lawrence and C.L. Giles (1999b), %%\\ Searching the Web: General and scientific information access, %%\\ {\em IEEE Commun.} {\bf 37}, 116. \bibitem{bil15} M. Leone, A. V\'azquez, A. Vespignani, and R. Zecchina (2002), %%\\ Ferromagnetic ordering in graphs with arbitrary degree distribution, %%\\ cond-mat/0203416. \bibitem{bil16} M. Levene, T. Fenner, G. Loizou, and R. Wheeldon (2002), A stochastic model for the evolution of the Web, {\em Comput. Netw.} {\bf 39}, 277; cond-mat/0110016. \bibitem{bil17} J.-S. Lih and J.-L. Chern (2001), Power-law scaling for communication networks with transmission errors, cond-mat/0109009. \bibitem{bil} F. Liljeros, C.R. Edling, L.A.N. Amaral, H.E. Stanley, and Y. $\mbox{\AA}$berg (2001), The web of human sexual contacts, {\em Nature} {\bf 411}, 907; cond-mat/0106507. \bibitem{bil18} S. Lise and M. Paczuski (2002), A nonconservative earthquake model %%%%%%%%% %%%%%%%%% \pagebreak %%%%%%%%% %%%%%%%%% of self-organized criticality on a random graph, {\em Phys. Rev. Lett.} {\bf 88}, 228301; cond-mat/0204491. \bibitem{bil19} A.L. Lloyd and R.M. May (2001), How viruses spread among computers and people, {\em Science} {\bf 292}, 1316. \bibitem{bil20} A.J. Lotka (1926), The frequency distribution of scientific productivity, {\em J. Washington Acad. Sci.} {\bf 16}, 317. \bibitem{bil21} T. Lux and M. Marchesi (1999), Scaling and criticality in a stochastic multi-agent model of a financial market, {\em Nature} {\bf 397}, 498. \bibitem{bil22} C. Lynch (1997), Searching the Internet, {\em Sci. Am.}, June, 52. %%M \bibitem{bim1} B.B. Mandelbrot (1983), {\em The Fractal Geometry of Nature} (Freeman, New York). \bibitem{bim2} S.S. Manna and P. Sen (2002), Modulated scale-free network in the Euclidean space, cond-mat/0203216. \bibitem{bim3} R.N. Mantegna and H.E. Stanley (1999), {\em An Introduction to Econophysics: Correlations and Complexity in Finance}, (Cambridge University Press, Cambridge). \bibitem{bim4} M. Marchiori and V. Latora (2000), Harmony in the small-world, {\em Physica} A {\bf 285}, 539; cond-mat/0008357. \bibitem{bim5} A. Maritan, F. Colaiori, A. Flammini, M. Cieplak, and J. Banavar (1996), Universality classes of optimal channel networks, {\em Science} {\bf 272}, 984. \bibitem{bim6} S. Maslov and K. Sneppen (2002a), Specificity and stability in topology of protein networks, {\em Science} {\bf 296}, 910; cond-mat/0205380. \bibitem{bim7} S. Maslov and K. Sneppen (2002b), Pattern detection in complex networks: Correlation profile of the Internet, cond-mat/0205379. \bibitem{bim8} S. Maslov and Y.-C. Zhang (2001), Towards information theory of knowledge networks, {\em Phys. Rev. Lett.} {\bf 87}, 248701; cond-mat/0104121. \bibitem{bim9} N. Mathias and V. Gopal (2001), Small-worlds: How and why, {\em Phys. Rev.} E {\bf 63}, 021117; cond-mat/0002076. \bibitem{bim10} S.M. Maurer and B.A. Huberman (2000), Competitive dynamics of Web sites, nlin.CD/0003041. \bibitem{bim11} S.M. Maurer and B.A. Huberman (2001), Restart strategies and Internet congestion, {\em J. Econ. Dyn. Control} {\bf 25} 641; nlin.CD/9905036. \bibitem{bim12} R.M. May and A.L. Lloyd (2001), Infection dynamics on scale-free networks, {\em Phys. Rev.} E {\bf 64}, 066112. \bibitem{bim13} M.A. de Menezes, C.F. Moukarzel, and T.J.P. Penna (2000), First-order transition in small-world networks, {\em Europhys. Lett.} {\bf 50}, 574; cond-mat/9903426. \bibitem{bim14} S. Milgram (1967), The small world problem, {\em Psychol. today} {\bf 2}, 60. \bibitem{bim15} M. Molloy and B. Reed (1995), A critical point for random graphs with a given degree sequence, {\em Random Struct. Algorithms} {\bf 6}, 161. %%(\pageref{pr17}, \pageref{pr24}) \bibitem{bim16} M. Molloy and B. Reed (1998), The size of the giant component of a random graph with a given degree sequence, {\em Combinatorics, Probab. Comput.} {\bf 7}, 295. \bibitem{bim17} R. Monasson (1999), Diffusion, localization, and dispersion relations on small-world lattices, {\em Eur. Phys. J.} B {\bf 12}, 555; cond-mat/9903347. \bibitem{bim18} J.M. Montoya and R.V. Sol\'e (2001), %%%%%%%%% %%%%%%%%% \pagebreak %%%%%%%%% %%%%%%%%% Topological properties of food webs: From real data to community assembly models, Working Papers of Santa Fe Institute, 01-11-069, \\ http://www.santafe.edu/sfi/publications/Abstracts/01-11-069abs.html. \bibitem{bim19} J.M. Montoya and R.V. Sol\'{e} (2002), Small world patterns in food webs, {\em J. Teor. Biol.} {\bf 214}, 405; cond-mat/0011195. \bibitem{bim20} C. Moore and M.E.J. Newman (2000a), Epidemics and percolation in small-world networks, {\em Phys. Rev.} E {\bf 61}, 5678; cond-mat/9911492. \bibitem{bim21} C. Moore and M.E.J. Newman (2000b), Exact solution of site and bond percolation on small-world networks, {\em Phys. Rev.} E {\bf 62}, 7059. \bibitem{bim22} A.A. Moreira, J.S. de Andrade Jr., and L.A.N. Amaral (2002), Extremum statistics in scale-free network models, cond-mat/0205411. \bibitem{bim23} Y. Moreno, J.B. G\'omez, and A.F. Pacheco (2002), Instability of scale-free networks under node-breaking avalanches, {\em Europhys. Lett.} {\bf 58}, 630; cond-mat/ \linebreak 0106136. \bibitem{bim24} Y. Moreno, R. Pastor-Satorras, and A. Vespignani (2002), Epidemic outbreaks in complex heterogeneous networks, {\em Eur. Phys. J.} {\bf 26}, 521; cond-mat/0107267. %%(\pageref{pr}) \bibitem{bim25} Y. Moreno and A. V\'azquez (2002), The Bak-Sneppen model on scale-free networks, {\em Europhys. Lett.} {\bf 57}, 765; cond-mat/0108494. %%(\pageref{pr}) \bibitem{bim26} S. Mossa, M. Barth\'el\'emy, H.E. Stanley, and L.A.N. Amaral (2002), Truncation of power law behaviour in "scale-free" network models due to information filtering, {\em Phys. Rev. Lett.} {\bf 88}, 138701; cond-mat/0201421. \bibitem{bim27} C.F. Moukarzel (2000), Spreading and shortest paths in systems with sparse long-range connections, {\em Phys. Rev.} E {\bf 60}, 6263. \bibitem{bim28} C.F. Moukarzel and M.A. de Menezes (1999), %%\\ Infinite characteristic length in small-world systems, %%\\ cond-mat/9905131. %%(\pageref{pr}) %%N \bibitem{bin1} M.E.J. Newman (2000a), %%\\ Small worlds: The structure of social networks, %%\\ cond-mat/0001118. %%(\pageref{pr}) \bibitem{bin2} M.E.J. Newman (2000b), %%\\ Models of the small world, %%\\ {\em J. Stat. Phys.} {\bf 101}, 819. %%(\pageref{pr}) \bibitem{bin3} M.E.J. Newman (2001a), %%\\ The structure of scientific collaboration networks, %%\\ {\em Proc. Natl Acad. Sci. USA} {\bf 98}, 404; cond-mat/0007214. %%(\pageref{pr}) \bibitem{bin4} M.E.J. Newman (2001b), %%\\ Clustering and preferential attachment in growing networks, %%\\ {\em Phys. Rev.} E {\bf 64}, 025102 cond-mat/0104209. %%(\pageref{pr}) \bibitem{bin5} M.E.J. Newman (2001c), %%\\ Ego-centered networks and the ripple effect, %%\\ cond-mat/0111070. %%(\pageref{pr}) \bibitem{bin6} M.E.J. Newman (2001d), %%\\ Exact solutions of epidemic models on networks, %%\\ Working Papers of Santa Fe Institute, 01-12-073, \\ http://www.santafe.edu/sfi/publications/Abstracts/01-12-073abs.html; cond-mat/0201433. %%(\pageref{pr}) \bibitem{bin7} M.E.J. Newman (2001e), Who is the best connected scientist? A study of scientific coauthorship networks, Scientific collaboration networks. I. Network construction and fundamental results, {\em Phys. Rev.} E {\bf 64}, 016131; II. Shortest paths, weighted networks, and centrality, {\em Phys. Rev.} E {\bf 64}, 016132; cond-mat/0010296. \bibitem{bin8} M.E.J. Newman (2002a), Random graphs as models of networks, cond-mat/ \linebreak 0202208. \bibitem{bin9} M.E.J. Newman (2002b), The spread of epidemic disease on networks, {\em Phys. Rev.} E {\bf 66}, 016128; cond-mat/0205009. \bibitem{bin10} M.E.J. Newman (2002c), %%\\ Assortative mixing in networks, %%\\ cond-mat/0205405. \bibitem{bin11} M.E.J. Newman, S. Forrest, and J. Balthrop (2002), Email networks and the spread of computer viruses, {\em Phys. Rev.} E {\bf 66}, 035101. \bibitem{bin12} M.E.J. Newman, I. Jensen, and R.M. Ziff (2002), %%\\ Percolation and epidemics in a two-dimensional small world, %%\\ {\em Phys. Rev.} E {\bf 65}, 021904; cond-mat/0108542. %%(\pageref{pr}) \bibitem{bin13} M.E.J. Newman, C. Moore, and D.J. Watts (2000), %%\\ Mean-field solution of small-world networks, %%\\ {\em Phys. Rev. Lett.} {\bf 84}, 3201. %%(\pageref{pr37}) \bibitem{bin14} M.E.J. Newman, S.H. Strogatz, and D.J. Watts (2001), %%\\ Random graphs with arbitrary degree distribution and their applications, %%\\ {\em Phys. Rev.} E {\bf 64}, 026118; cond-mat/0007235. %%(\pageref{pr19,} \pageref{pr43}) \bibitem{bin15} M.E.J. Newman and D.J. Watts (1999a), %%\\ Renormalization group analysis of the small-world network model, %%\\ {\em Phys. Lett.} A {\bf 263}, 341. %%(\pageref{pr}) \bibitem{bin16} M.E.J. Newman and D.J. Watts (1999b), %%\\ Scaling and percolation in the small-world network model, %%\\ {\em Phys. Rev.} E {\bf 60}, 7332. %%(\pageref{pr}) %%O \bibitem{bio} M. Ozana (2001), %%\\ Incipient spanning cluster on small-world networks, %%\\ {\em Europhys. Lett.} {\bf 55}, 762. %%(\pageref{pr}) %%P \bibitem{bip1} S.A. Pandit and R.E. Amritkar (1999), %%\\ Characterization and control of small-world networks, %%\\ {\em Phys. Rev.} E {\bf 60}, R1119; chao-dyn/9901017, cond-mat/ \linebreak 0004163. \bibitem{bip2} S.A. Pandit and R.E. Amritkar (2001), %%\\ Random spread on the family of small-world networks, %%\\ Phys. Rev. E {\bf 63}, 041104; cond-mat/0004163. %%(\pageref{pr}) \bibitem{bip3} J.-J. Pansiot and D. Grad (1998), On routes and multicast trees in the Internet, {\em Comput. Commun. Rev.} {\bf 28}, 41. %%(\pageref{pr}) \bibitem{bip4} V. Pareto (1897), {\em Cours d'Economie Politique} (Macmillan, London). \bibitem{bip5} R. Pastor-Satorras, E. Smith, and R.V. Sol\'e (2002), %%\\ Evolving protein interaction networks through gene duplication, %%\\ Working Papers of Santa Fe Institute, 02-02-008, \\ http://www.santafe.edu/sfi/publications/Abstracts/02-02-008abs.html. \bibitem{bip6} R. Pastor-Satorras, A. V\'azquez, and A. Vespignani (2001), Dynamical and correlation properties of the Internet, {\em Phys. Rev. Lett.} {\bf 87}, 258701; cond-mat/0105161. \bibitem{bip7} R. Pastor-Satorras and A. Vespignani (2000), Epidemic spreading in scale-free networks, {\em Phys. Rev. Lett.} {\bf 86}, 3200; cond-mat/0010317. \bibitem{bip8} R. Pastor-Satorras and A. Vespignani (2001), Epidemic dynamics and endemic states in complex networks, {\em Phys. Rev.} E {\bf 63}, 066117; cond-mat/0102028. \bibitem{bip9} R. Pastor-Satorras and A. Vespignani (2002a), Epidemic dynamics in finite size scale-free networks, {\em Phys. Rev.} E {\bf 65}, 035108; cond-mat/0202298. \bibitem{bip10} R. Pastor-Satorras and A. Vespignani (2002b), Optimal immunisation of complex networks, {\em Phys. Rev.} E 65, 036104; cond-mat/0107066. \bibitem{bip11} R. Pastor-Satorras and A. Vespignani (2002c), Epidemics and immunization in scale-free networks, cond-mat/0205260. \bibitem{bip12} D.M. Pennock, G.W. Flake, S. Lawrence, E.J. Glover, and C.L. Giles (2002), Winners don't take all: Characterising the competition for links on the web, {\em Proc. Natl Acad. Sci. USA} {\bf 99}, 5207. \bibitem{bip13} J. Podani, Z.N. Oltvai, H. Jeong, B. Tombor, A.-L. Barab\'asi, and E. Szathm\'ary (2001), Com\-pa\-rable system-level organization of Archaeva and Eukaryotes, Nature Publishing Group, nature genetics, advance online publication, http://genetics.nature.com, 1-3. \bibitem{bip14} D.J. de S. Price (1965), Networks of scientific papers, {\em Science} {\bf 149}, 510. \bibitem{bip15} A.R. Puniyani and R.M. Lukose (2001), Growing random networks under constraints, cond-mat/0107391. \bibitem{bip16} A.R. Puniyani, R.M. Lukose, and B.A. Huberman (2001), Intentional walks on scale-free small worlds, cond-mat/0107212. %%Q \bibitem{biq1} C. Quince, P.G. Higgs, and A.J. McKane (2001), Food web structure and the evolution of ecological communities, nlin.AO/0105057. %%R \bibitem{bir1} D. Rafiei and A.O. Mendelzon (2000), What is this page known for? Computing Web page reputations, Proceedings of the WWW9 Conference, Amsterdam. \bibitem{bir2} A. Ramzanpour and V. Karimipour (2002), Simple models of small world networks with directed links, cond-mat/0205244. \bibitem{bir3} S. Redner (1998), How popular is your paper? An empirical study of citation distribution, {\em Eur. Phys. J.} B {\bf 4}, 131. \bibitem{bir4} G.J. Rodgers and K. Darby-Dowman (2001), Properties of a growing random directed network, {\em Eur. Phys. J.} B {\bf 23}, 267. \bibitem{bir5} T. Roehl and S. Bornholdt (2001), Self-organized critical neural networks, cond-mat/0109256. \bibitem{bir6} T. Rohlf and S. Bornholdt (2002), Criticality in random threshold networks: Annealed approximation and beyond, {\em Physica} A {\bf 310}, 245; cond-mat/0201079. %%S \bibitem{bis1} M.L. Sachtjen, B.A. Carreras, and V.E. Lynch (2000), Disturbances in a power transmission system, {\em Phys. Rev.} E {\bf 61}, 4877. \bibitem{bis2} A.D. S\'anchez, J.M. L\'opez, and M.A. Rodr\'{\i}guez (2002), Non-equilibrium phase transitions in directed small-world networks, {\em Phys. Rev. Lett.} {\bf 88}, 048701; cond-mat/0110500. \bibitem{bis3} A. Scala, L.A.N. Amaral, and M. Barth\'el\'emy (2001), Small-world networks and the conformation space of a lattice polymer chain, {\em Europhys. Lett.} {\bf 55}, 594; cond-mat/0004380. \bibitem{bis4} N. Schwartz, R. Cohen, D. ben-Avraham, A.-L. Barab\'asi, and S. Havlin (2002), Percolation in directed scale-free networks, Phys. Rev. E {\bf 66}, 015104; cond-mat/0204523. \bibitem{bis5} J. Scott (1979), {\em Social Network Analysis: A Handbook} (Sage Publications, London). \bibitem{bis6} P. Sen and B.K. Chakrabarti (2001), Small-world phenomena and the statistics of linear polymer networks, {\em J. Phys.} A {\bf 34}, 7749; cond-mat/0105346. \bibitem{bis7} Z. Silagadze (1997), Citations and the Zipf-Mandelbrot's law, {\em Complex Syst.} {\bf 11}, 487; physics/9901035. \bibitem{bis8} H.A. Simon (1955), On a class of skew distribution functions, {\em Biometrica} {\bf 42}, 425. \bibitem{bis9} H.A. Simon (1957), {\em Models of Man} (Wiley, New York). \bibitem{bis10} W. Shockley (1957), On the statistics of individual variations of productivity in research laboratories, {\em Proc. IRE} {\bf 45}, 279; 1409. \bibitem{bis11} F. Slanina and M. Kotrla (1999), %%\\ Extremal dynamics model on evolving networks, %%\\ {\em Phys. Rev. Lett.} {\bf 83}, 5587; cond-mat/9901275. \bibitem{bis12} F. Slanina and M. Kotrla (2000), Random networks created by biological evolution, {\em Phys. Rev.} E {\bf 62}, 6170; cond-mat/0004407. \bibitem{bis13} R.V. Sol\'{e} and J.M. Montoya (2001), Complexity and fragility in ecological networks, {\em Proc. R. Soc. London} B {\bf 268}, 2039; cond-mat/0011196. \bibitem{bis14} R.V. Sol\'e, R. Pastor-Satorras, E.D. Smith, and T. Kepler (2001), A model of large-scale proteome evolution, Working Papers of Santa Fe Institute, 01-08-041, http://www.santafe.edu/sfi/publications/Abstracts/01-08-041abs.html. \bibitem{bis15} S. Solomon and M. Levy (1996), Spontaneous scaling emergence in generic stochastic systems, Int. J. Phys. C {\bf 7}, 745. %%(\pageref{pr}) \bibitem{bis16} S. Solomon and S. Maslov (2000), Pareto laws in financial autocatalytic/multi\-pli\-cative stochastic systems, http://www.unifr.ch/econophysics/. %%(\pageref{pr}) \bibitem{bis17} S. Solomon and P. Richmond (2001), Stability of Pareto-Zipf law in non-statio\-nary economics, {\em Economics with heterogeneous interacting agents}, ed. A. Kirman and J.B. Zimmermann, Lecture Notes in Economics and Mathematical Systems (Springer, Berlin), p. 141; cond-mat/0012479. \bibitem{bis18} D. Sornette and R. Cont (1997), Convergent multiplicative processes repelled from zero: Power laws and truncated power laws, {\em J. Phys.} I (France) {\bf 7}, 431. \bibitem{bis19} W. Souma, Y. Fujiwara, and H. Aoyama (2001), Small-world effects in wealth distribution, cond-mat/0108482. \bibitem{bis20} D. Stauffer and A. Aharony (1991), {\em Introduction to Percolation Theory} (Taylor $\&$ Francis, London). \bibitem{bis21} M. Steyvers and J.B. Tenenbaum (2001), %%\\ The large-scale structure of semantic networks: Statistical analyses and a model for semantic growth, %%\\ cond-mat/0110012. %%(\pageref{pr}) \bibitem{bis22} W.H. Stockmayer (1943/1944), Theory of molecular size distribution and gel formation in branched chain polymers, {\em J. Chem. Phys.} {\bf 11}, 45 (1943); {\bf 12}, 125 (1944). \bibitem{bis23} S.H. Strogatz (2001), Exploring complex networks, {\em Nature} {\bf 410}, 268. \bibitem{bis24} P. Svenson (2001), From N'eel to NPC: Colouring small worlds, cs.CC/0107015. %%(\pageref{pr34}) \bibitem{bis25} P. Svenson and D.A. Johnston (2002), Damage spreading in small world Ising models, {\em Phys. Rev.} E {\bf 65}, 036105; cond-mat/0107555. \bibitem{bis26} G. Szab\'o, M. Alava, and J. Kert\'esz (2002), Shortest paths and load scaling in scale-free trees, cond-mat/0203278. %%T \bibitem{bit1} B. Tadi\'{c} (2001a), %%\\ Dynamics of directed graphs: The World Wide Web, %%\\ {\em Physica} A {\bf 286}, 509; cond-mat/0011442. %%(\pageref{pr}) \bibitem{bit2} B. Tadi\'c (2001b), %%\\ Access time of an adaptive random walk on the World Wide Web, %%\\ cond-mat/0104029. %%(\pageref{pr}) \bibitem{bit3} B. Tadi\'c (2001c), %%\\ Adaptive random walks on the class of Web graph, %%\\ {\em Eur. Phys. J.} B {\bf 23}, 221; cond-mat/0110033. %%(\pageref{pr}) \bibitem{bit4} B. Tadi\'c (2001d), %%\\ Temporal fractal structures: Origin of power-laws in the World-Wide Web, %%\\ cond-mat/0112047. %%(\pageref{pr}) \bibitem{bit5} C. Tsallis and M.P. de Albuquerque (2000), %%\\ Are citations of scientific papers a case of nonextensivity?, %%\\ {\em Eur. Phys. J.} B {\bf 13}, 777; cond-mat/9903433. %%U \bibitem{biu1} P. Uetz, L. Giot, G. Cagney, T.A. Mansfield, R.S. Judson, V. Narayan, D.~Lockshon, M. Srinivasan, P. Pochart, A. Qureshi-Emili, Y.~Li, B.~Godwin, D. Conover, T. Kalbfleisch, G. Vijayadamodar, M. Yang, M.~Johnston, S.~Fields, and J.M.~Rothberg (2000), A comprehensive analysis of protein--protein interactions in {\em Saccharomyces cerevisiae}, {\em Nature} {\bf 403}, 623. %%V \bibitem{biv1} S. Valverde, R. Ferrer i Cancho, and R.V. Sol\'e (2002), Scale-free networks from optimal design, cond-mat/0204344. \bibitem{biv2} S. Valverde and R.V. Sol\'e (2002), Self-organized critical traffic in parallel computer networks, {\em Physica} A {\bf 312}, 636. \bibitem{bia22} N. Vandewalle and M. Ausloos (1997), Construction and properties of fractal trees with tunable dimension: The interplay of geometry and physics, {\em Phys. Rev.} E {\bf 55}, 94. \bibitem{biv3} A. V\'azquez (2001a), %%Knowing a network by walking on it: emergence of scaling, Disordered networks generated by recursive searches, {\em Europhys Lett.} {\bf 54}, 430; cond-mat/0006132. \bibitem{biv4} A. V\'azquez (2001b), Statistics of citation networks, cond-mat/0105031. \bibitem{biv5} A. V\'azquez, A. Flammini, A. Maritan, and A. Vespignani (2001), Modeling of protein interaction networks, cond-mat/0108043. %%(\pageref{pr}) \bibitem{biv6} A. V\'azquez, R. Pastor-Satorras, and A. Vespignani (2002), Large-scale topological and dynamical properties of Internet, {\em Phys. Rev.} E {\bf 65}, 066130; cond-mat/0112400. \bibitem{biv7} D. Volchenkov and Ph. Blanchard (2002), An algorithm generating scale free graphs, cond-mat/0204126. %%W \bibitem{biw1} A. Wagner (2001a), The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes, %%%{\em Molecular Biology and Evolution} {\em Mol. Biol. Evol.} {\bf 18}, 1283. %%%Working Papers of Santa Fe Institute, 01-04-022, %%%http://www.santafe.edu/sfi/publications/Abstracts/01-04-022abs.html. \bibitem{biw2} A. Wagner (2001b), How to reconstruct a large genetic network from $n$ gene perturbations in fewer than $n^2$ easy steps, {\em Bioinformatics} {\bf 17}, 1183. %%%Working Papers of Santa Fe Institute, 01-09-047, %%%http://www.santafe.edu/sfi/publications/Abstracts/01-09-047abs.html. \bibitem{biw3} A. Wagner (2001c), Reconstructing pathways in large genetic networks from genetic perturbations, Working Papers of Santa Fe Institute, 01-09-050, \\ http://www.santafe.edu/sfi/publications/Abstracts/01-09-050abs.html. \bibitem{biw4} A. Wagner (2002), Estimating coarse gene network structure from large-scale gene perturbation data, {\em Genome Research} {\bf 12}, 309. %%%%%%Working Papers of Santa Fe Institute, 01-09-051, %%%http://www.santafe.edu/sfi/publications/Abstracts/01-09-051abs.html. \bibitem{biw5} A. Wagner and D.A. Fell (2001), The small world inside large metabolic networks, {\em Proc. R. Soc. London} B, 268, 1803. %%%Working Papers of Santa Fe Institute, 00-007-041, %%%http://www.santafe.edu/sfi/publications/Abstracts/00-007-041abs.html. \bibitem{biw6} X.F. Wang and G. Chen (2002), Synchronization in scale-free dynamical networks: Robustness and fragility, {\em IEEE T. Circuits-I} {\bf 49}, 54; cond-mat/0105014. \bibitem{biw7} S. Wasserman and K. Faust (1994), {\em Social Network Analysis} (Cambridge University Press, Cambridge). \bibitem{biw8} D.J. Watts (1999), {\it Small Worlds} (Princeton University Press, Princeton, NJ). \bibitem{biw9a} D.J. Watts, P.S. Dodds, and M.E.J. Newman (2002), Identity and search in social networks, {\em Science} {\bf 296}, 1302; cond-mat/0205383. \bibitem{biw9} D.J. Watts and S.H. Strogatz (1998), Collective dynamics of small-world networks, {\em Nature} {\bf 393}, 440. \bibitem{biw10} M. Weigt and A.K. Hartmann (2000), The number of guards needed by a museum: A phase transition in vertex covering of random graphs, {\em Phys. Rev. Lett.} {\bf 84}, 6118; cond-mat/0001137. \bibitem{biw11} M. Weigt and A.K. Hartmann (2001a), Statistical mechanics perspective on the phase transition in vertex covering finite-connectivity random graphs, {\em Theor. Comput. Sci.} {\bf 256}, 199; cond-mat/0006316. \bibitem{biw12} M. Weigt and A.K. Hartmann (2001b), Typical solution time for a vertex-covering algorithm on finite-connectivity random graphs, {\em Phys. Rev. Lett.} {\bf 86}, 1658; cond-mat/0009417. \bibitem{biw13} D.R. White and M.E.J. Newman (2001), Fast approximation algorithms for finding node-independent paths in networks, Working Papers of Santa Fe Institute, 01-07-035, \\ http://www.santafe.edu/sfi/publications/Abstracts/01-07-035abs.html. \bibitem{biw14} R.J. Williams and N.D. Martinez (2000), Simple rules yield complex food webs, {\em Nature} {\bf 404}, 180. \bibitem{biw15} R.J. Williams, N.D. Martinez, E.L. Berlow, J.A. Dunne, and A.-L. Barab\'asi (2001), Two degrees of separation in complex food webs, Working Papers of Santa Fe Institute, 01-07-036, \\ http://www.santafe.edu/sfi/publications/Abstracts/01-07-036abs.html. \bibitem{biw16} N.C. Wormald (1981a), The asymptotic connectivity of labelled regular graphs, {\em J. Combinatorial Theor.} B {\bf 31}, 156. \bibitem{biw17} N.C. Wormald (1981b), The asymptotic distribution of short cycles in random regular graphs, {\em J. Combinatorial Theor.} B {\bf 31}, 168. %%X \bibitem{bix1} R. Xulvi-Brunet and I.M. Sokolov (2002), Evolving networks with disadvantaged long-range connections, cond-mat/0205136. %%Y \bibitem{biy1} S.-H. Yook, H. Jeong, and A.-L. Barab\'asi (2001), Modeling the Internet's large-scale topology, cond-mat/0107417. \bibitem{biy2} S.-H. Yook, H. Jeong, A.-L. Barab\'{a}si, and Y. Tu (2001), Weighted evolving networks, {\em Phys. Rev. Lett.} {\bf 86}, 5835; cond-mat/0101309. %%Z \bibitem{biz1} D.H. Zanette (2001a), Critical behavior of propagation on small-world networks, {\em Phys. Rev.} E {\bf 64}, 050901; cond-mat/0105596. \bibitem{biz2} D.H. Zanette (2001b), Criticality of rumor propagation on small-world networks, cond-mat/0109049. \bibitem{biz3} D.H. Zanette (2002), Dynamics of rumor propagation on small-world networks, {\em Phys. Rev.} E {\bf 65} 041908; cond-mat/0110324. \bibitem{biz4} D.H. Zanette and M. Kuperman (2002), Effects of immunization in small-world epidemics, {\em Physica} A {\bf 309}, 445; cond-mat/0109273. \bibitem{biz5} D.H. Zanette and S.C. Manrubia (2001), Vertical transmission of culture and the distribution of family names, {\em Physica} A {\bf 295}, 1; nlin.AO/0009046. \bibitem{biz6} N. Zekri and J.-P. Clerc (2001), Statistical and dynamical study of disease propagation in a small world network, {\em Phys. Rev.} E {\bf 64}, 056116; cond-mat/0107562. \bibitem{biz7} D. Zheng and G. Ergun (2001), Coupled growing networks, cond-mat/0112052. \bibitem{biz8} G.K. Zipf (1949), {\em Human Behaviour and the Principle of Least Effort} (Addison-Wesley, Cambridge, MA). %%%%%%%%%%%%%\end{small} \endthebibliography